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What is Vision-Language Research?

Goal: Train a smart AI system that can understand both image and text.

Image from: https://arxiv.org/abs/1912.02315.

Approach: Transformer + Large-scale self-supervised pre-training on image-text pairs.
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Vision-Language Pre-training Background

ViLBERT
Aug, 2019

VisualBERT
Aug, 2019

B2T2
Aug, 2019

Unicoder-VL
Aug, 2019

LXMERT
Aug, 2019

VL-BERT
Aug, 2019

Unified VLP
Sep, 2019

UNITER
Sep, 2019

12-in-1
Dec, 2019

Oscar
Apr, 2020

VILLA
June, 2020

ERNIE
June,

ImageBERT
Jan, 2020

PixelBERT
Apr, 2020
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Traditional Two-Tower Architecture
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Traditional Two-Tower Architecture
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Traditional Two-Tower Architecture
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Traditional Two-Tower Architecture
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Traditional Two-Tower Architecture
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Traditional Two-Tower Architecture
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Motivation

Textual
Tower

Visual
Tower

Cross-Modal
Fusion

𝑉!"#

𝑉$%&$𝑇$%&$

𝑇!"#

Numerous works proved: different layers encode different types of semantic information. 

Question: can we build bridges between different layers of 
uni-modal towers and the cross-modal fusion module?

Two-Tower architecture 
only use the last-layer uni-modal features.
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Two-TowerTwo-Tower BRIDGETOWERTwo-Tower

only fuse the
last layer features

gradually fuse 
multiple top layer features

Two-Tower vs BridgeTower
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Cross Attention

Feed Forward

Self Attention

BridgeLayer

Self Attention

Feed Forward
Cross Attention

Feed Forward

Self Attention

BridgeLayer

Self Attention

Feed Forward

Self Attention

Feed Forward

Self Attention

Feed Forward

× 6 6 ×

Tower Bridge in London

6 ×

Textual Encoder Cross-Modal Encoder Visual Encoder

Our BridgeTower Architecture
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Ablation Study
Design I: Definition of Bridges

Design II: Number of Layers

Design III: Number of Bridges

𝑦
𝑥 𝑥

𝑦
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Design I: Definition of Bridges
𝑦

𝑥 𝑥
𝑦

x: the output cross-modal representation of the previous layer

y: the corresponding uni-modal representation 14



Design II: Number of Layers

𝐿!
number of layers

starting from the top
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Design III: Number of Bridges
External

Internal

Two-Tower(METER)

BridgeTower
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Apply Different Uni-modal Backbones

Textual
Tower

Visual
Tower
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• Pre-training Objectives
• Masked Language Modeling – MLM
• Image-Text Matching – ITM

• Pre-training Datasets
• 4M Images, ∼9M Image-Text Pairs

Pre-training Settings
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Results on VQAv2 Dataset
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Results on VQAv2 Dataset
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Results on SNLI-VE and Flickr30K Dataset
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(a) METER, visual self-attention (b) BRIDGETOWER, visual self-attention

(c) METER, textual self-attention (d) BRIDGETOWER, textual self-attention

(e) METER, visual cross-attention (f) BRIDGETOWER, visual cross-attention

(g) METER, textual cross-attention (h) BRIDGETOWER, textual cross-attention

(a) METER, visual self-attention (b) BRIDGETOWER, visual self-attention

(c) METER, textual self-attention (d) BRIDGETOWER, textual self-attention

(e) METER, visual cross-attention (f) BRIDGETOWER, visual cross-attention

(g) METER, textual cross-attention (h) BRIDGETOWER, textual cross-attention

(a) METER, visual self-attention (b) BRIDGETOWER, visual self-attention

(c) METER, textual self-attention (d) BRIDGETOWER, textual self-attention

(e) METER, visual cross-attention (f) BRIDGETOWER, visual cross-attention

(g) METER, textual cross-attention (h) BRIDGETOWER, textual cross-attention

(a) METER, visual self-attention (b) BRIDGETOWER, visual self-attention

(c) METER, textual self-attention (d) BRIDGETOWER, textual self-attention

(e) METER, visual cross-attention (f) BRIDGETOWER, visual cross-attention

(g) METER, textual cross-attention (h) BRIDGETOWER, textual cross-attention

(a) METER, visual self-attention (b) BRIDGETOWER, visual self-attention

(c) METER, textual self-attention (d) BRIDGETOWER, textual self-attention

(e) METER, visual cross-attention (f) BRIDGETOWER, visual cross-attention

(g) METER, textual cross-attention (h) BRIDGETOWER, textual cross-attention

(a) METER, visual self-attention (b) BRIDGETOWER, visual self-attention

(c) METER, textual self-attention (d) BRIDGETOWER, textual self-attention

(e) METER, visual cross-attention (f) BRIDGETOWER, visual cross-attention

(g) METER, textual cross-attention (h) BRIDGETOWER, textual cross-attention

(a) METER, visual self-attention (b) BRIDGETOWER, visual self-attention

(c) METER, textual self-attention (d) BRIDGETOWER, textual self-attention

(e) METER, visual cross-attention (f) BRIDGETOWER, visual cross-attention

(g) METER, textual cross-attention (h) BRIDGETOWER, textual cross-attention

KL Divergence Visualization

Higher/lower KL divergence means that different attention heads pay attention to different/similar tokens.

(a) METER, visual self-attention (b) BRIDGETOWER, visual self-attention

(c) METER, textual self-attention (d) BRIDGETOWER, textual self-attention

(e) METER, visual cross-attention (f) BRIDGETOWER, visual cross-attention

(g) METER, textual cross-attention (h) BRIDGETOWER, textual cross-attention
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Conclusion & Future
• Conclusion:

• We introduced BridgeTower, a simple but effective architecture for VL pre-training.

• We studied different design choices for bridges.

• We show that BridgeTower achieves SOTA results on multiple downstream tasks.

• Future:

• More Pre-training Objectives (currently we only use two)

• Larger-Scale Pre-training (currently only 4M data)

• More Modalities (currently only two modalities )
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Integrated into Hugging Face – Transformers

• Source Code: https://github.com/huggingface/transformers/tree/main/src/transformers/models/bridgetower

• Documentation: https://huggingface.co/docs/transformers/main/en/model_doc/bridgetower 24

https://github.com/huggingface/transformers/tree/main/src/transformers/models/bridgetower
https://huggingface.co/docs/transformers/main/en/model_doc/bridgetower


• Pre-trained models released on Hugging Face – Model Hub
• https://huggingface.co/BridgeTower

• Model Variants
• Number of parameters:

Textual 
Encoder

Visual 
Encoder

Cross-Modal
Encoder

Total

BridgeTower!"#$ 124M 86M 113M 323M

BridgeTower%"&'$ 355M 304M 200M 859M

Integrated into Hugging Face – Transformers
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Usage – Image-Text Matching
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Usage – Masked Language Modeling

•
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Next Steps

q Pre-training and Fine-tuning scripts

q Checkpoints and notebooks for more downstream tasks

• Notably, code and model checkpoints for pre-training and all downstream 
tasks are available in https://github.com/microsoft/BridgeTower.
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Take-away messages

• Build bridges between top uni-modal layers and each cross-modal layer can

• introduce different semantic levels of visual and textual representations.

• improve the diversity of attention heads in the cross-modal encoder.

• achieve prominent performance improvements on various tasks.

• BridgeTower can work with any visual, textual, or cross-modal encoder.
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