

BridgeTower: Building Bridges Between Encoders in Vision-Language Representation Learning

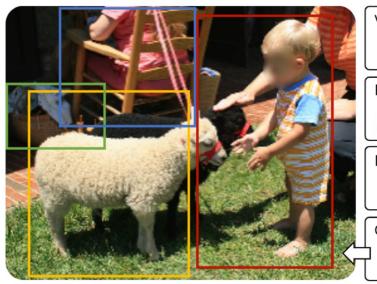
Xiao Xu^{1,2}, Chenfei Wu², Shachar Rosenman³, Vasudev Lal³, Wanxiang Che¹, Nan Duan²

¹Harbin Institute of Technology, ²Microsoft Research Asia, ³Intel Labs

Presenter: Xiao Xu

Work done during the internship of Microsoft Research Asia.

What is Vision-Language Research?



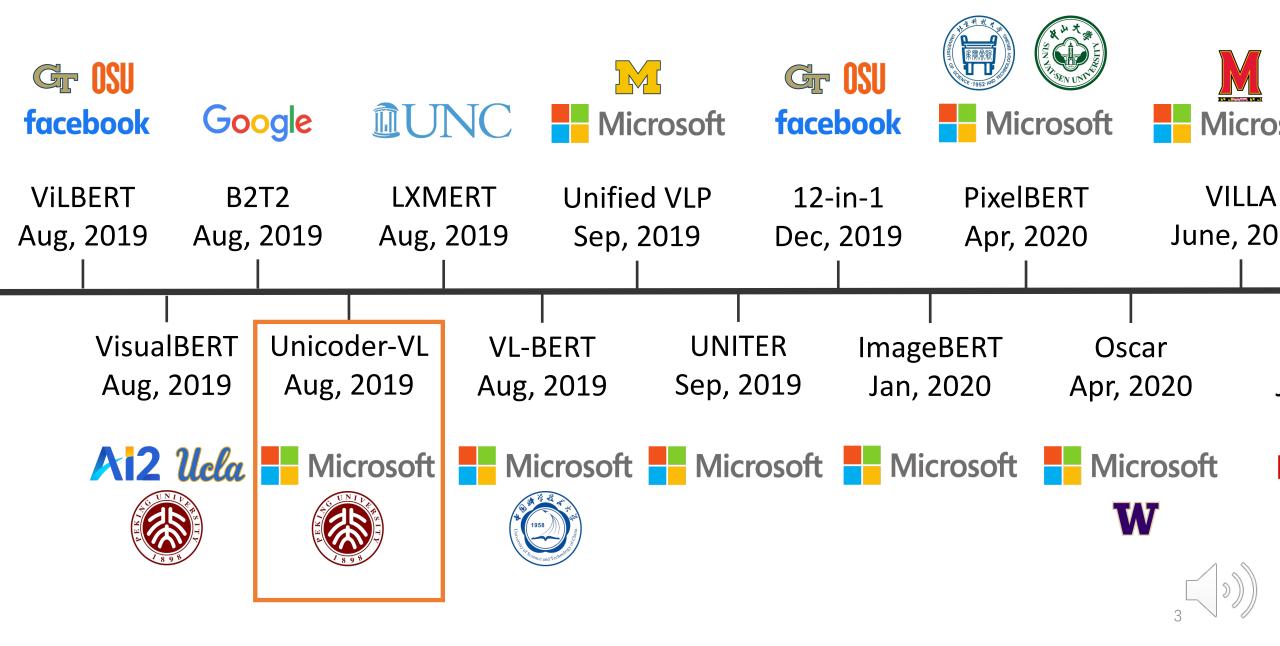
	Visual Question Answering What color is the child's outfit? Orange										
	Referring Expressions child sheep basket people sitting on chair										
-	Multi-modal Verification The child is petting a dog. false										
	Caption-based Image Retrieval A child in orange clothes plays with sheep.										

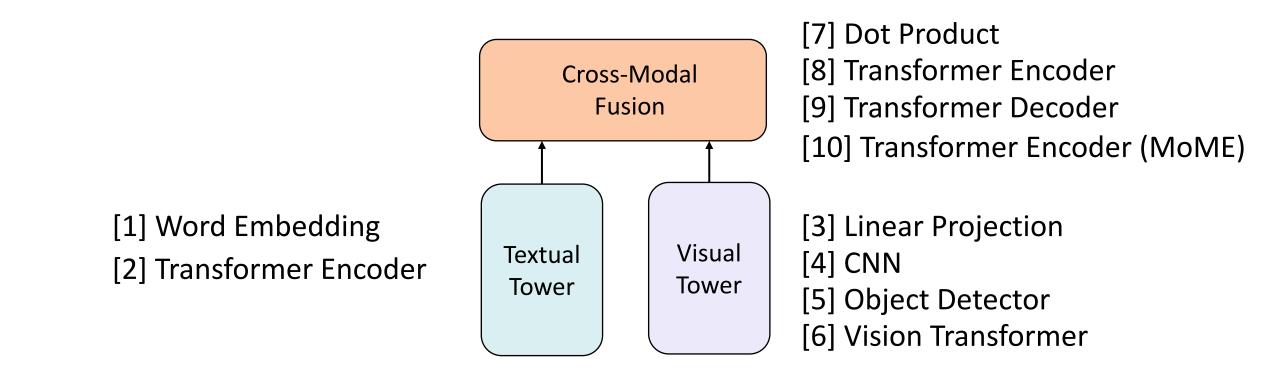
Goal: Train a smart AI system that can understand both image and text.

Approach: Transformer + Large-scale self-supervised pre-training on image-text pairs.

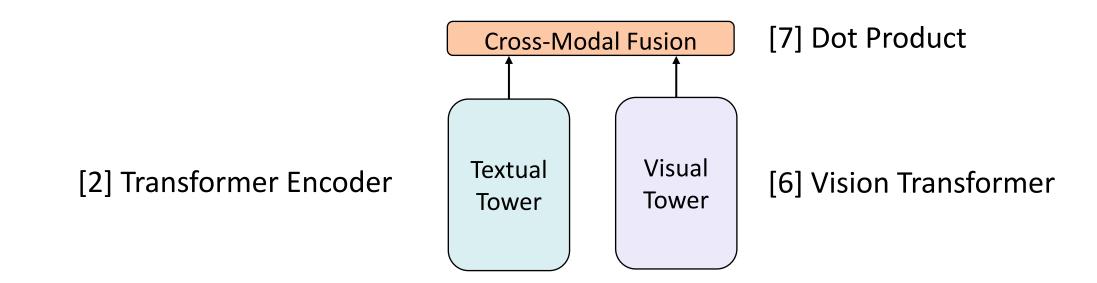
Image from: https://arxiv.org/abs/1912.02315.

Vision-Language Pre-training Background

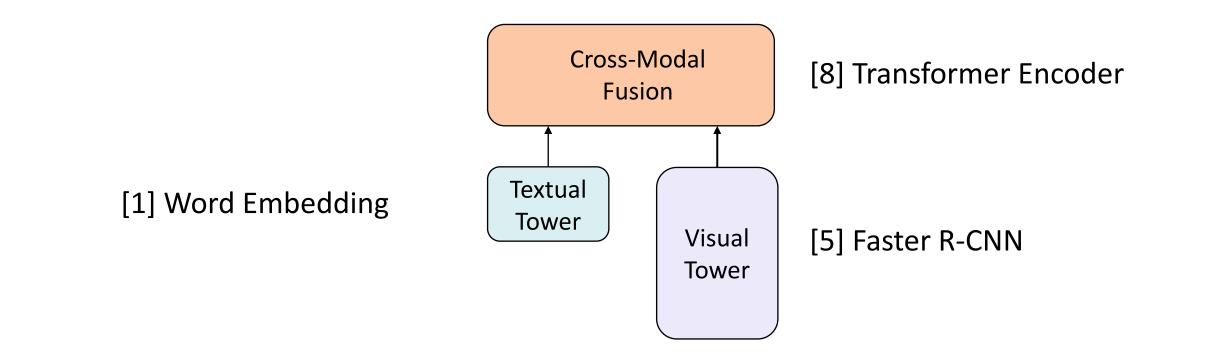




	CLIP	SOHO	Unicoder-VL	ViLT	VL-T5	METER	UniT	OFA	VLMo	BLIP
Textual-Tower	[2]	[1]	[1]	[1]	[1]	[2]	[2]	[1]	[1]	[2]
Visual-Tower	[6]	[4]	[5]	[3]	[5]	[6]	[6]	[4]	[3]	[6]
Cross-Fusion	[7]	[8]	[8]	[8]	[8] + [9]	[8]	[9]	[8] + [9]	[10]	[8] + [9]

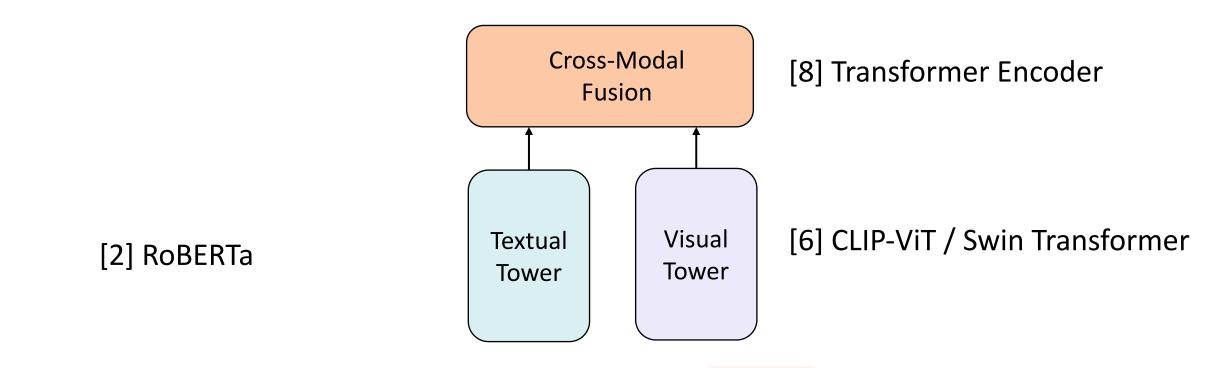


	CLIP	SOHO	Unicoder-VL	ViLT	VL-T5	METER	UniT	OFA	VLMo	BLIP
Textual-Tower	[2]	[1]	[1]	[1]	[1]	[2]	[2]	[1]	[1]	[2]
Visual-Tower	[6]	[4]	[5]	[3]	[5]	[6]	[6]	[4]	[3]	[6]
Cross-Fusion	[7]	[8]	[8]	[8]	[8] + [9]	[8]	[9]	[8] + [9]	[10]	[8] + [9]

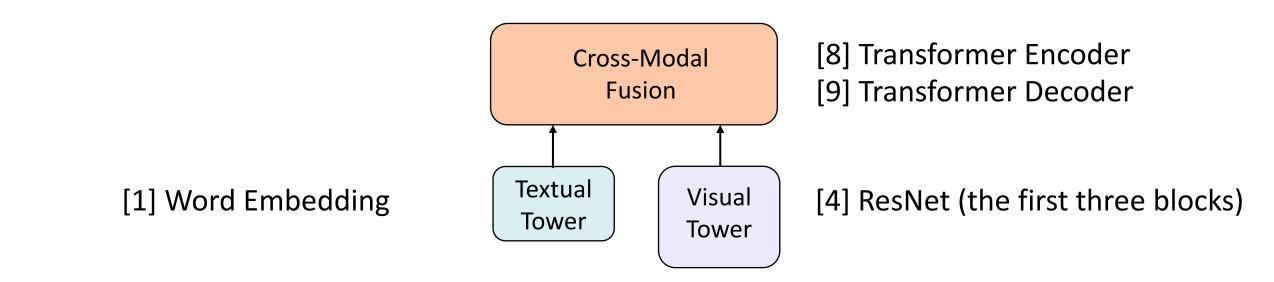


	CLIP	SOHO	Unicoder-VL	ViLT	VL-T5	METER	UniT	OFA	VLMo	BLIP
Textual-Tower	[2]	[1]	[1]	[1]	[1]	[2]	[2]	[1]	[1]	[2]
Visual-Tower	[6]	[4]	[5]	[3]	[5]	[6]	[6]	[4]	[3]	[6]
Cross-Fusion	[7]	[8]	[8]	[8]	[8] + [9]	[8]	[9]	[8] + [9]	[10]	[8] + [9]

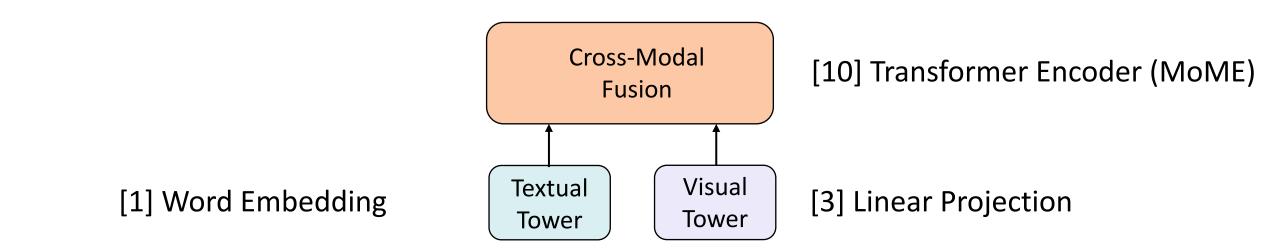
(»)



	CLIP	SOHO	Unicoder-VL	ViLT	VL-T5	METER	UniT	OFA	VLMo	BLIP
Textual-Tower	[2]	[1]	[1]	[1]	[1]	[2]	[2]	[1]	[1]	[2]
Visual-Tower	[6]	[4]	[5]	[3]	[5]	[6]	[6]	[4]	[3]	[6]
Cross-Fusion	[7]	[8]	[8]	[8]	[8] + [9]	[8]	[9]	[8] + [9]	[10]	[8] + [9]



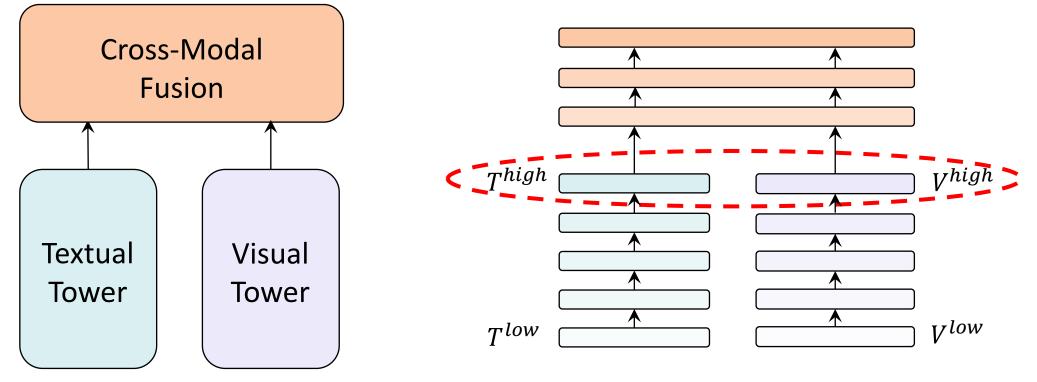
	CLIP	SOHO	Unicoder-VL	ViLT	VL-T5	METER	UniT	OFA	VLMo	BLIP
Textual-Tower	[2]	[1]	[1]	[1]	[1]	[2]	[2]	[1]	[1]	[2]
Visual-Tower	[6]	[4]	[5]	[3]	[5]	[6]	[6]	[4]	[3]	[6]
Cross-Fusion	[7]	[8]	[8]	[8]	[8] + [9]	[8]	[9]	[8] + [9]	[10]	[8] + [9]



Textual-Tower [2] [1] [1] [1] [2] [2] [1]	[1]	5.4.3
	[±]	[2]
Visual-Tower [6] [4] [5] [3] [5] [6] [4]	[3]	[6]
Cross-Fusion [7] [8] [8] [8] + [9] [8] [9] [8] + [9]) [10]	[8] + [9]

Motivation

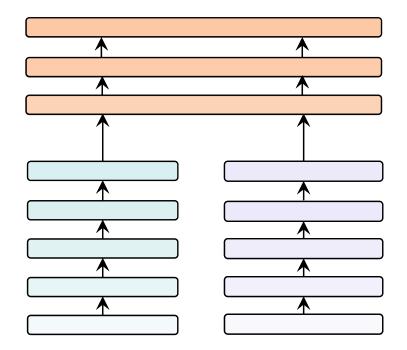
Two-Tower architecture only use the last-layer uni-modal features.

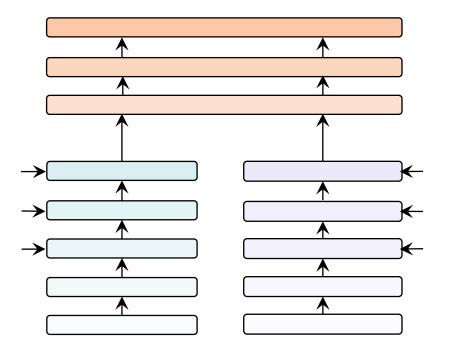


Numerous works proved: different layers encode different types of semantic information.

Question: can we build bridges between different layers of uni-modal towers and the cross-modal fusion module?

Two-Tower vs BridgeTower



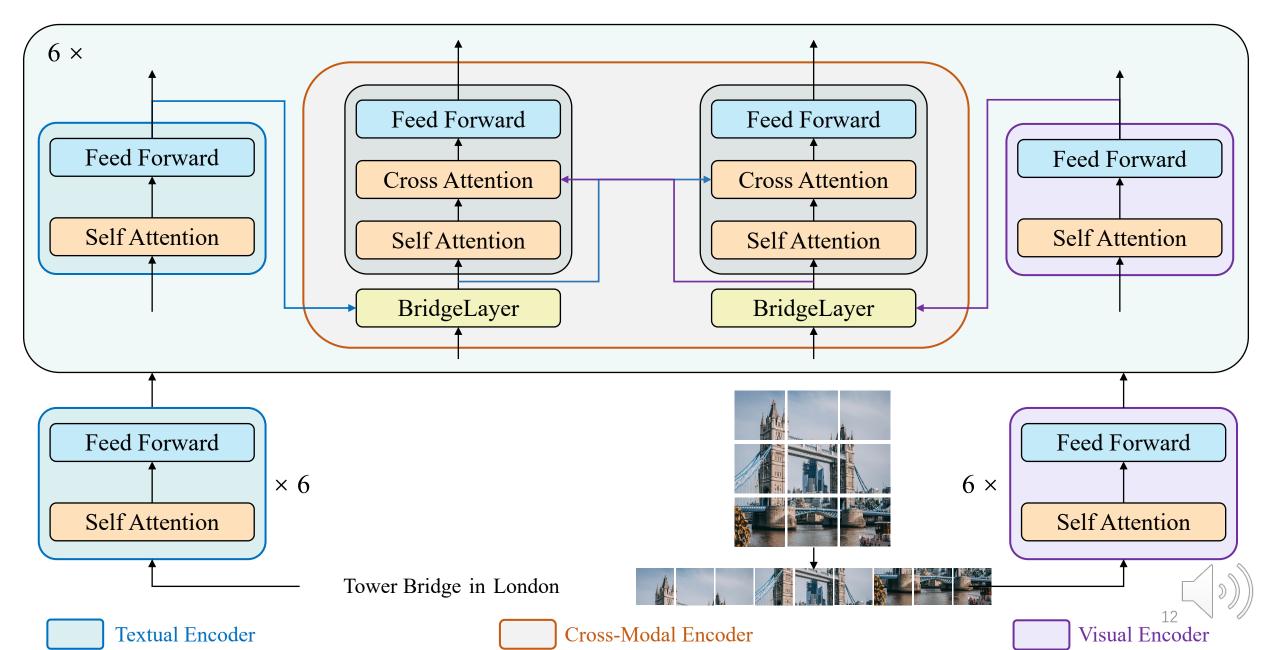


Two-Tower

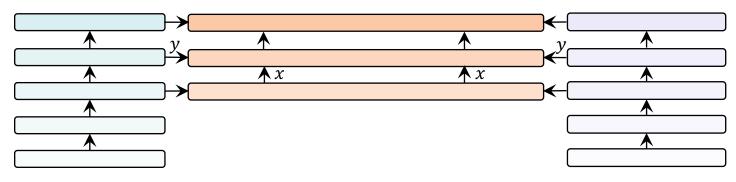
only fuse the last layer features BWIDGEOWER

gradually fuse multiple top layer features

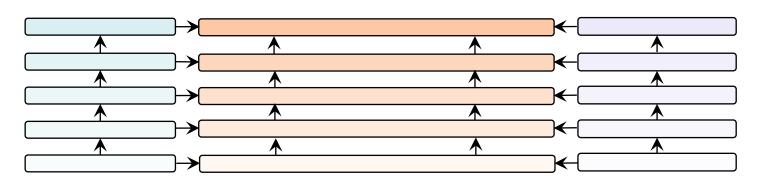
Our BridgeTower Architecture



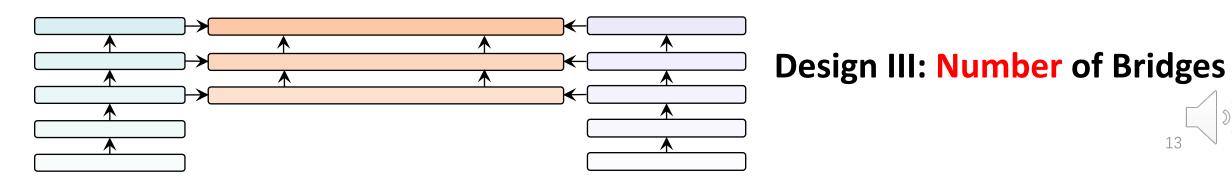
Ablation Study



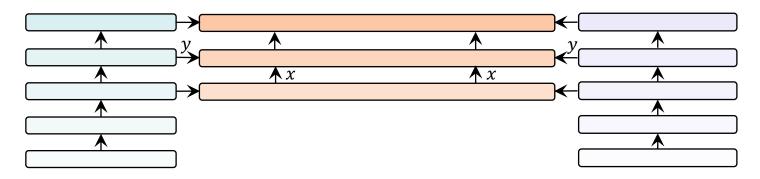
Design I: Definition of Bridges



Design II: Number of Layers



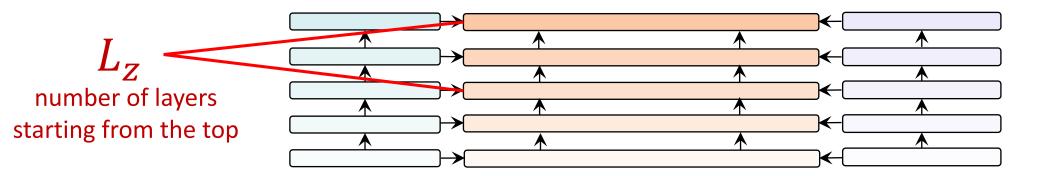
Design I: Definition of Bridges



$\operatorname{BridgeLayer}(x,y)$	# Params	Test-Dev	RSUM
(a) $x + y$	18.4K	75.18	533.8
(b) $x \odot y$	18.4K	73.41	530.4
(c) $\alpha x + (1 - \alpha) y, \alpha \in \mathbb{R}^{D_Z}$	26.0K	75.09	532.9
(d) $\alpha x + (1 - \alpha) y, \alpha = \sigma(\mathbf{W}[x; y])$	11.8M	75.13	533.1
(e) $\mathbf{W}[x;y]$	11.8M	74.55	532.2
(f) \mathbf{W}_2 (GeLU ($\mathbf{W}_1[x;y]$))	35.4M	74.26	530.2
(g) MCA (x, y)	23.6M	73.67	514.3
(h) FFN (MCA (x, y))	70.8M	73.54	511.1
(i) $x + y + \mathbf{W}_*[x;y]$	11.8M	75.10	533.1

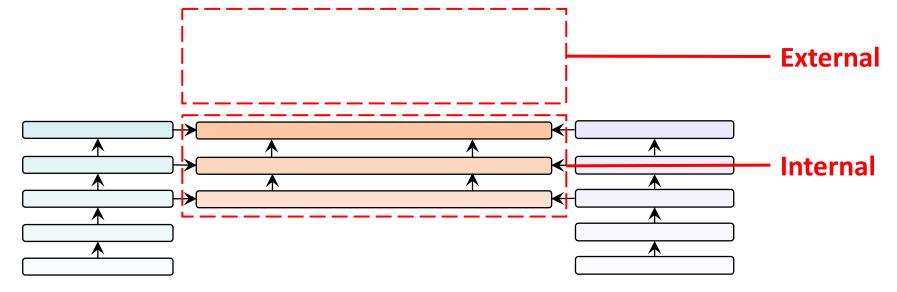
- x: the output cross-modal representation of the previous layer
- y: the corresponding uni-modal representation

Design II: Number of Layers



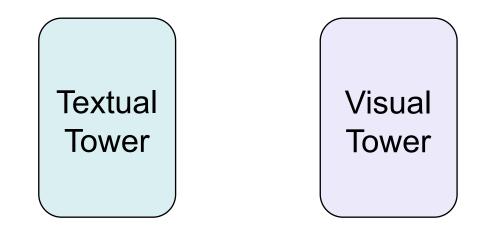
τ_	# Params	VQA	v2 Test-Dev	Flickr30K RSUM		
LZ		METER	Ours	METER	Ours	
2	37.8M	72.84	74.12 († 1.28)	526.0	527.1 († 1.1)	
3	56.8M	73.47	74.36 († 0.89)	526.5	528.6 († 2.1)	
4	75.6M	73.71	75.00 († 1.29)	527.9	529.7 († 1.8)	
5	94.6M	73.80	74.98 († 1.18)	528.8	531.8 († 3.0)	
6	113.4M	74.04	75.18 († 1.14)	530.7	533.8 († 3.1)	
8	151.2M	73.97	75.07 († 1.10)	530.0	531.6 († 1.6)	
10	189.0M	73.45	75.06 († 1.61)	529.6	531.7 († 2.1)	
12	226.8M	71.88	74.94 († 3.06)	528.7	531.4 († 2.7)	

Design III: Number of Bridges



	# Internal	# External	VQAv2 Test-Dev	Flickr30K RSUM
BridgeTower ———	6	0	75.18	533.8
	4	2	75.06 (↓ 0.12)	533.1 (↓ 0.7)
	3	3	74.97 (↓ 0.21)	532.8 (↓ 1.0)
	2	4	74.71 (↓ 0.47)	532.3 (↓ 1.5)
Two-Tower(METER) ——	0	6	74.04 (↓ 1.14)	530.7 (↓ 3.1)

Apply Different Uni-modal Backbones



Visual	Textual	VQA	v2 Test-Dev	Flickr.	30K RSUM
Backbone	Backbone	METER	Ours	METER	Ours
DeiT B-224/16					
ViT B-224/16	RoBERTa	70.26	72.24 († 1.98)	472.7	476.9 († 4.2)
ViT B-384/16	RoBERTa	70.52	72.38 († 1.86)	472.8	477.1 († 4.3)
CLIP-VIT-B/32	RoBERTa	72.19	72.91 († 0.72)	508.8	512.0 († 3.2)
CLIP-VIT-B/16	BERT	74.09	74.89 († 0.80)	522.1	526.5 († 4.4)
CLIP-VIT-B/16	RoBERTa	74.04	75.18 († 1.14)	530.7	533.8 († 3.1)

Pre-training Settings

Pre-training Objectives

- Masked Language Modeling MLM
- Image-Text Matching ITM
- Pre-training Datasets
 - 4M Images, ~9M Image-Text Pairs

	COCO	VG	CC	SBU
# Images	113K	108K	2.9M	860K
# Captions	567K	4.8M	2.9M	860K

Hyperparameters	BRIDGETOWERBASE	BRIDGETOWERLARGE
Number of Layers	6	6
Hidden size	768	1,024
FFN inner hidden size	3,072	4,096
Number of Attention heads	12	16
Dropout Ratio	0.1	0.1
Attention dropout	0.1	0.1
Total Steps	100k	100k
Batch Size	4,096	4,096
Textual Encoder	RoBERTa _{BASE}	RoBERTaLARGE
Visual Encoder	CLIP-ViT-B	CLIP-ViT-L
Patch Size	16	14
Image Resolution	288	294

Results on VQAv2 Dataset

Model	# Pre-train	Visual	Test-Dev		Test-Sta		
Widder	Images	Backbone	Overall	Yes/No	Number	Other	Overall
Base-Size Models							
ViLT _{BASE} (Kim, Son, and Kim 2021)	4M	ViT-B-384/32	71.26	-	-	-	-
UNITER _{BASE} (Chen et al. 2020) *	4M	Faster R-CNN	72.70	-	-	-	72.91
VILLA _{BASE} (Gan et al. 2020) *	4M	Faster R-CNN	73.59	-	-	-	73.67
UNIMO _{BASE} (Li et al. 2021b)	4 M	Faster R-CNN	73.79	-	-	-	74.02
ALBEF _{BASE} (Li et al. 2021a) $*$	4M	DeiT-B-224/16	74.54	-	-	-	74.70
ALBEF _{BASE} (Li et al. 2021a) $*$	14 M	DeiT-B-224/16	75.84	-	-	-	76.04
VinVL _{BASE} (Zhang et al. 2021)	5.7M	ResNeXt-152	75.95	-	-	-	76.12
VLMO _{BASE} (Wang et al. 2021a)	4M	BEiT-B-224/16	76.64	-	-	-	76.89
BLIP _{BASE} (Li et al. 2022b) *	14 M	DeiT-B-224/16	77.54	-	-	-	77.62
METER _{BASE} (Dou et al. 2022)	4M	CLIP-ViT-B-224/16	77.68	92.49	58.07	69.20	77.64
mPLUG (Li et al. 2022a) *	4M	CLIP-ViT-B-224/16	77.94	-	-	-	77.96
OFA_{BASE} (Wang et al. 2022b) * *	54M	ResNet-101	77.98	-	-	-	78.07
SimVLM _{BASE} (Wang et al. 2021c) \star	1.8 B	ResNet-101	77.87	-	-	-	78.14
BLIP _{BASE} (Li et al. 2022b) *	129M	DeiT-B-224/16	78.24	-	-	-	78.17
BRIDGETOWER _{BASE} (Ours)	4M	CLIP-ViT-B-224/16	78.66	92.92	60.69	70.51	78.73
BRIDGETOWER _{BASE} (Ours) *	4M	CLIP-ViT-B-224/16	79.10	93.06	62.19	70.69	79.04
Large-Size Models			•				
UNITER _{LARGE} (Chen et al. 2020) *	4M	Faster R-CNN	73.82	-	-	-	74.02
VILLA _{LARGE} (Gan et al. 2020) *	4M	Faster R-CNN	74.69	-	-	-	74.87
UNIMO _{LARGE} (Li et al. 2021b)	4M	Faster R-CNN	75.06	-	-	-	75.27
VinVL _{LARGE} (Zhang et al. 2021)	5.7M	ResNeXt-152	76.52	92.04	61.50	66.68	76.63
SimVLM _{LARGE} (Wang et al. 2021c)	1.8 B	ResNet-152	79.32	-	-	-	79.56
VLMO _{LARGE} (Wang et al. 2021a)	4M	BEiT-L-224/16	79.94	-	-	-	79.98
OFA_{LARGE} (Wang et al. 2022b) * *	54M	ResNet-152	80.43	93.32	67.31	72.71	80.67
BRIDGETOWER _{LARGE} (Ours)	4M	CLIP-ViT-L-224/14	81.25	94.69	64.58	73.16	81.15
BridgeTower _{large} (Ours) *	4M	CLIP-ViT-L-224/14	81.52	94.80	66.01	73.45	81.49

19

Results on VQAv2 Dataset

Model	# Pre-train	Visual	Test-Dev		Test-Sta	andard	
Widden	Images	Backbone	Overall	Yes/No	Number	Other	Overall
Large-Size Models							
UNITER _{LARGE} (Chen et al. 2020) *	4M	Faster R-CNN	73.82	-	-	-	74.02
VILLA _{LARGE} (Gan et al. 2020) *	4M	Faster R-CNN	74.69	-	-	-	74.87
UNIMO _{LARGE} (Li et al. 2021b)	4M	Faster R-CNN	75.06	-	-	-	75.27
VinVL _{LARGE} (Zhang et al. 2021)	5.7M	ResNeXt-152	76.52	92.04	61.50	66.68	76.63
SimVLM _{LARGE} (Wang et al. 2021c)	1.8 B	ResNet-152	79.32	-	-	-	79.56
VLMO _{LARGE} (Wang et al. 2021a)	4M	BEiT-L-224/16	79.94	-	-	-	79.98
OFA_{LARGE} (Wang et al. 2022b) * *	54M	ResNet-152	80.43	93.32	67.31	72.71	80.67
BRIDGETOWER _{LARGE} (Ours)	4M	CLIP-ViT-L-224/14	81.25	94.69	64.58	73.16	81.15
BridgeTower _{large} (Ours) *	4M	CLIP-ViT-L-224/14	81.52	94.80	66.01	73.45	81.49
Huge or even Larger Size Models							
SimVLM _{HUGE} (Wang et al. 2021c)	1.8B	ResNet-101	80.03	93.29	66.54	72.23	80.34
METER _{HUGE} (Dou et al. 2022)	14M	Florence-CoSwin-H	80.33	94.25	64.37	72.30	80.54
mPLUG (Li et al. 2022a) *	14 M	CLIP-ViT-L-224/14	81.27	-	-	-	81.26
GIT2 (Wang et al. 2022a) *	10.5B	DaViT(4.8B)	81.74	92.90	67.06	75.77	81.92
OFA_{HUGE} (Wang et al. 2022b) * *	54M	ResNet-152	82.0	94.66	71.44	73.35	81.98
Flamingo (Alayrac et al. 2022) *	2.3B	NFNet-F6	82.0	-	-	-	82.1
CoCa (Yu et al. 2022) *	4.8B	ViT-G-288/18	82.3	94.55	70.25	74.46	82.33
BEiT-3 (Wang et al. 2022c)	28M	BEiT-3	84.19	96.43	73.63	75.92	84.18
PaLI (Chen et al. 2022)	1.6B	ViT-E-224	84.3	96.13	69.07	77.58	84.34

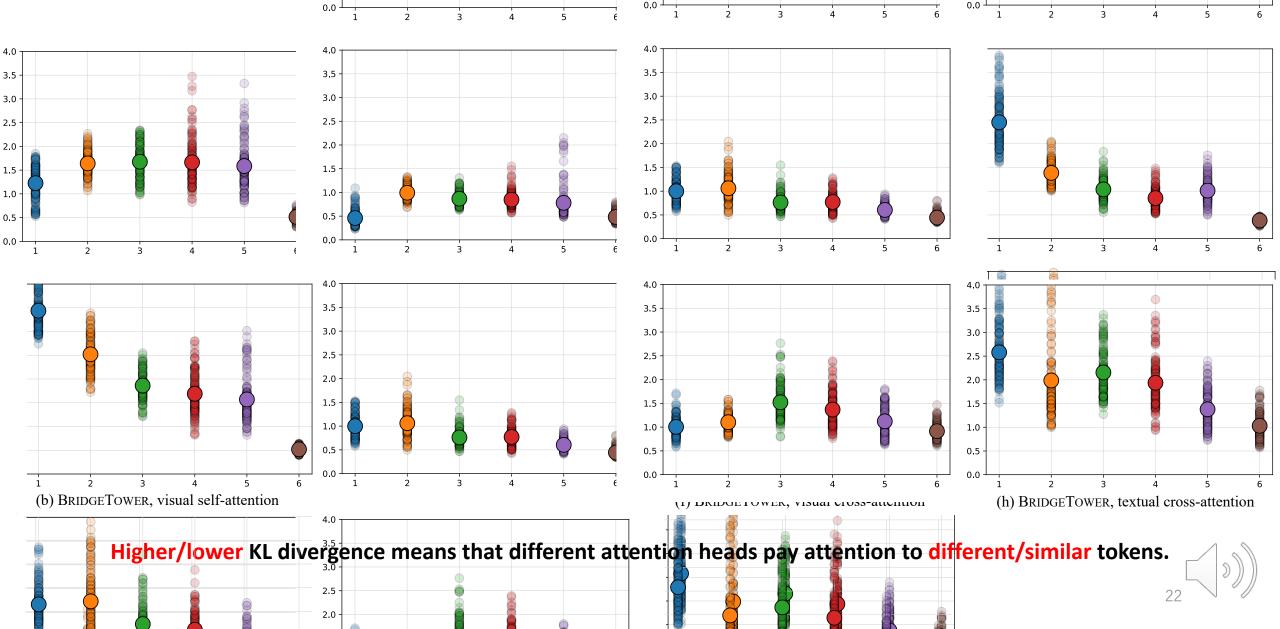
20

Results on SNLI-VE and Flickr30K Dataset

Madal	# Pre-train	SNL	I-VE	Flickr30K (1K test set)						
Model	Images	dev	test	IR@1	IR@5	IR@10	TR@ 1	TR@5	TR@10	RSUM
Pre-trained on More Data										
ALIGN _{BASE} (Jia et al. 2021)	1.8B	-	-	84.9	97.4	98.6	95.3	99.8	100.0	576.0
ALBEF _{BASE} (Li et al. 2021a)	14 M	80.80	80.91	85.6	97.5	98.9	95.9	99.8	100.0	577.7
Pre-trained on CC, SBU, MSCOCO and	VG datasets									
ViLT _{BASE} (Kim, Son, and Kim 2021)	4M	-	-	64.4	88.7	93.8	83.5	96.7	98.6	525.7
UNITER _{LARGE} (Chen et al. 2020)	4M	79.30	79.38	75.6	94.1	96.8	87.3	98.0	99.2	550.9
VILLA _{LARGE} (Gan et al. 2020)	4M	80.18	80.02	76.3	94.2	96.8	87.9	97.5	98.8	551.5
UNIMO _{LARGE} (Li et al. 2021b)	4M	81.11	80.63	78.0	94.2	97.1	89.4	98.9	99.8	557.5
ALBEF _{BASE} (Li et al. 2021a)	4M	80.14	80.30	82.8	96.7	98.4	94.3	99.4	99.8	571.4
METER-CLIP-ViT _{BASE} (Dou et al. 2022)	4M	80.86	81.19	82.2	96.3	98.4	94.3	99.6	99.9	570.7
BRIDGETOWER _{BASE} (Ours)	4M	81.11	81.19	85.8	97.6	98.9	94. 7	99.6	100.0	576.6

KL Divergence Visualization

2.0



2.0

1.5 1.0 0.5

Conclusion & Future

- Conclusion:
 - We introduced BridgeTower, a simple but effective architecture for VL pre-training.
 - We studied different design choices for bridges.
 - We show that BridgeTower achieves SOTA results on multiple downstream tasks.
- Future:
 - More Pre-training Objectives (currently we only use two)
 - Larger-Scale Pre-training (currently only 4M data)
 - More Modalities (currently only two modalities)

Integrated into Hugging Face – Transformers

ЖK

78,811

Transformers `

MAIN

MODELS

TEXT MODELS

VISION MODELS

AUDIO MODELS

AltCLIP

BridgeTower

Chinese-CLIP

BLIP

CLIP

CLIPSeg

Data2Vec

Donut

FLAVA

GroupViT

LavoutLMV2

LayoutLMV3

LayoutXLM

LXMERT OneForme OWL-VIT

Perceiver

TrOCR

-----OWI-VIT Perceiver

TrOCR

Speech Encoder Decoder Models

Speech Encoder Decoder Models

GIT

MULTIMODAL MODELS

Q Search documentation

✓ EN ✓

Image Processor

Overview

BridgeTower

The BridgeTower model was proposed in

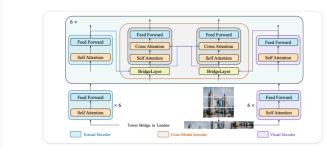
BridgeTower Overview Usage

N BridgeTower: Building Bridges Between Encoders in Vision-Language Representative Learning by Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan. The goal of this model is to build a bridge between each uni-modal encoder and the cross-modal encoder to enable comprehensive and detailed interaction at each layer of the cross-modal encoder thus achieving remarkable performance on various downstream tasks with almost negligible additional performance and computational costs.

This paper has been accepted to the AAAI'23 conference.

The abstract from the paper is the following:

Vision-Language (VL) models with the TWO-TOWER architecture have dominated visual-language representation learning in recent years. Current VL models either use lightweight uni-modal encoders and learn to extract, align and fuse both modalities simultaneously in a deep cross-modal encoder, or feed the last-layer uni-modal representations from the deep pre-trained unimodal encoders into the top cross-modal encoder. Both approaches potentially restrict vision-language representation learning and limit model performance. In this paper, we propose BRIDGETOWER, which introduces multiple bridge layers that build a connection between the top layers of uni-modal encoders and each layer of the crossmodal encoder. This enables effective bottomup cross-modal alianment and fusion between visual and textual representations of different semantic levels of pre-trained unimodal encoders in the cross-modal encoder. Pre-trained with only 4M images, BRIDGETOWER achieves state-of-the-art performance on various downstream vision-language tasks. In particular, on the VQAv2 test-std set, BRIDGETOWER achieves an accuracy of 78.73%, outperforming the previous state-of-the-art model METER by 1.09% with the same pre-training data and almost negligible additional parameters and computational costs. Notably, when further scaling the model, BRIDGETOWER achieves an accuracy of 81.15%, surpassing models that are pre-trained on orders-of-magnitude larger datasets.



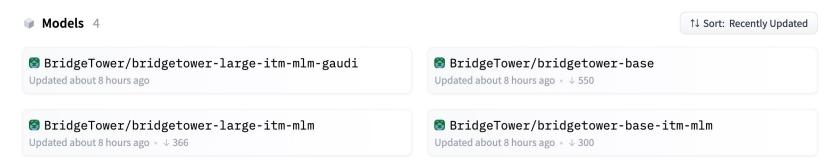
BridgeTowerConfig BridgeTowerTextConfig BridgeTowerVisionConfig BridgeTowerImageProcesso BridgeTowerProcessor BridgeTowerModel BridgeTowerForMaskedLM BridgeTowerForImageAndText Retrieval

• Source Code: https://github.com/huggingface/transformers/tree/main/src/transformers/models/bridgetower

Documentation: https://huggingface.co/docs/transformers/main/en/model_doc/bridgetower

Integrated into Hugging Face – Transformers

- Pre-trained models released on Hugging Face Model Hub
 - <u>https://huggingface.co/BridgeTower</u>



- Model Variants
 - Number of parameters:

	Textual Encoder	Visual Encoder	Cross-Modal Encoder	Total
BridgeTower _{Base}	124M	86M	113M	323M
BridgeTower _{Large}	355M	304M	200M	859M

Usage – Image-Text Matching

from transformers import BridgeTowerProcessor, BridgeTowerForImageAndTextRetrieval
import requests
from PIL import Image

url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
texts = ["An image of two cats chilling on a couch", "A football player scoring a goal"]

processor = BridgeTowerProcessor.from_pretrained("BridgeTower/bridgetower-base-itm-mlm")
model = BridgeTowerForImageAndTextRetrieval.from_pretrained("BridgeTower/bridgetower-base-itm-mlm")

```
# forward pass
scores = dict()
for text in texts:
    # prepare inputs
    encoding = processor(image, text, return_tensors="pt")
    outputs = model(**encoding)
    scores[text] = outputs.logits[0,1].item()
# {'An image of two cats chilling on a couch': 4.8437371253967285,
# 'A football player scoring a goal': -6.897047996520996}
```


Usage – Masked Language Modeling

from transformers import BridgeTowerProcessor, BridgeTowerForMaskedLM
from PIL import Image
import requests

url = "http://images.cocodataset.org/val2017/000000360943.jpg"
image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
text = "a <mask> looking out of the window"

processor = BridgeTowerProcessor.from_pretrained("BridgeTower/bridgetower-base-itm-mlm")
model = BridgeTowerForMaskedLM.from_pretrained("BridgeTower/bridgetower-base-itm-mlm")

prepare inputs
encoding = processor(image, text, return_tensors="pt")

forward pass
outputs = model(**encoding)

results = processor.decode(outputs.logits.argmax(dim=-1).squeeze(0).tolist())

print(results)
a cat looking out of the window.

Next Steps

Pre-training and Fine-tuning scripts

Checkpoints and notebooks for more downstream tasks

 Notably, code and model checkpoints for pre-training and all downstream tasks are available in <u>https://github.com/microsoft/BridgeTower</u>.

Take-away messages

- Build bridges between top uni-modal layers and each cross-modal layer can
 - introduce different semantic levels of visual and textual representations.
 - improve the diversity of attention heads in the cross-modal encoder.
 - achieve prominent performance improvements on various tasks.
- BridgeTower can work with any visual, textual, or cross-modal encoder.

Thanks & QA

Xiao Xu^{1,2}, Chenfei Wu², Shachar Rosenman³, Vasudev Lal³, Wanxiang Che¹, Nan Duan²

¹Harbin Institute of Technology, ²Microsoft Research Asia, ³Intel Labs

Presenter: Xiao Xu

Slides and more in <u>https://looperxx.github.io/</u>.