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Manager: Aggregating Insights from Unimodal Experts

in Two-Tower VLMs and MLLMs
Xiao Xu, Libo Qin, Wanxiang Che and Min-Yen Kan, Senior Member, IEEE

Abstract—Two-Tower Vision–Language Models (VLMs) have
demonstrated strong performance across various downstream
VL tasks. While BridgeTower further enhances performance by
building bridges between encoders, it (i) suffers from ineffective
layer-by-layer utilization of unimodal representations, (ii)
restricts the flexible exploitation of different levels of unimodal
semantic knowledge, and (iii) is limited to the evaluation on
traditional low-resolution datasets only with the Two-Tower VLM
architecture. In this work, we propose Manager, a lightweight,
efficient and effective plugin that adaptively aggregates insights
from different levels of pre-trained unimodal experts to facilitate
more comprehensive VL alignment and fusion. First, under the
Two-Tower VLM architecture, we introduce ManagerTower, a
novel VLM that introduces the manager in each cross-modal
layer. No matter with or without VL Pre-training, ManagerTower
outperforms previous strong baselines and achieves superior
performance on 4 downstream VL tasks. Moreover, we extend
our exploration to the latest Multimodal Large Language Model
(MLLM) architecture. We demonstrate that LLaVA-OV-Manager
significantly boosts the zero-shot performance of LLaVA-OV
across different categories of capabilities, images, and resolutions
on 20 downstream datasets, whether the multi-grid algorithm is
enabled or not. In-depth analysis reveals that both our manager
and the multi-grid algorithm can be viewed as a plugin that im-
proves the visual representation by capturing more diverse visual
details from two orthogonal perspectives (depth and width). Their
synergy can mitigate the semantic ambiguity caused by the multi-
grid algorithm and further improve performance. Code and mod-
els are available at https://github.com/LooperXX/ManagerTower.

Index Terms—Vision–Language Model, Multimodal Large
Language Model, Representation Learning.

I. INTRODUCTION

RECENTLY, the field of Vision–Language (VL) represen-
tation learning has gained significant attention, driven by

advancements in Vision–Language Pre-training (VLP) tech-
niques. VLP aims to learn transferable multimodal knowledge
from extensive image–text pairs into Vision–Language Models
(VLMs), which can improve VL representation and thus
further improve performance on various downstream tasks,
such as visual question answering [2], visual entailment [3],
visual reasoning [4], and image–text retrieval [5].
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Fig. 1. A brief overview of BridgeTower and ManagerTower. Hollow
arrows represent the transmission of multi-layer unimodal representations in
ManagerTower, in contrast to the layer-by-layer transmission in BridgeTower.

Two-Tower VLM is a general architecture that processes
visual and textual modalities with corresponding unimodal
encoders and then fuses them in a cross-modal encoder.
METER [6] and BridgeTower [7] are two representative Two-
Tower VLMs. METER uses CLIP-ViT [8] and RoBERTa [9]
as pre-trained unimodal encoders, but overlooks different
levels of unimodal semantic knowledge contained in multi-
layer unimodal representations. It only feeds the last-layer rep-
resentation from each unimodal encoder into the cross-modal
encoder, which may limit the model capability. To tackle this
issue, as shown in Fig. 1, BridgeTower builds connections
between multiple top unimodal layers and each cross-modal
layer in a layer-by-layer manner, to exploit unimodal semantic
knowledge at different levels.

In this work, we build upon the research of BridgeTower
and advance it in four aspects: (a) Ineffective layer-by-layer
utilization of multi-layer unimodal representations. Each
cross-modal layer is limited to using a pre-defined unimodal
layer representation, which restricts the utilization of different
levels of unimodal semantic knowledge and the model
capability. (b) Strictly bound the number of cross-modal
layers to the number of unimodal layer representations
the model can use. An increase in either side leads to a
corresponding increase in the other side, leading to more
parameters and computation cost, and poor scalability.
(c) Only exploring the utilization of multi-layer unimodal
representations in the Two-Tower VLM architecture. Lack
of exploration in other VLM architectures, e.g., Multimodal
Large Language Model (MLLM), limits the generality of
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the conclusions. (d) Limited post-fine-tuning evaluation on
datasets with low-resolution natural images. Constrained by
the capability of traditional VLMs, the model cannot perform
more challenging zero-shot evaluations on broader datasets,
such as high-resolution document understanding.

For the first two aspects, under the Two-Tower VLM archi-
tecture, we propose a novel VLM, ManagerTower, that intro-
duces managers in each cross-modal layer to aggregate multi-
layer unimodal representations, as shown in Fig. 1. Each man-
ager takes multi-layer unimodal representations as insights
from pre-trained unimodal experts at different levels (layers),
and then aggregates them to facilitate more comprehensive
vision–language alignment and fusion. Inspired by the linear
combination of layers method [10], we explore the feasibility
of various designs of managers by evaluating and analyzing
the performance on VQAv2 and Flickr30K datasets. The best
manager, Adaptive Aggregation Unimodal Manager (AAUM),
can adaptively aggregate multi-layer unimodal representations
for different tokens in different samples in each cross-modal
layer. Then, we pre-train ManagerTower with commonly used
4M VLP data and evaluate it on 4 downstream datasets.
With the same pre-training, fine-tuning and evaluation settings
as previous strong Two-Tower VLMs such as METER and
BridgeTower, ManagerTower achieves superior performances
on all datasets, and outperforms not only many base-size
models pre-trained on 4M data but also some models pre-
trained on more data and/or with larger size. Moreover, in
principle, managers are scalable and flexible enough to be used
as a plugin, easily integrated into any cross-modal encoder,
and works well with any unimodal encoder.

For the last two aspects, we further extend the exploration
of managers to the latest MLLM architecture, and introduce
the manager to LLaVA-OV [11] to get LLaVA-OV-Manager,
as shown in Fig. 2. Benefiting from the strong LLM and the
multi-grid algorithm [12] capable of improving the supported
image resolution in MLLMs, we can zero-shot evaluate the
effectiveness of managers on broader downstream datasets,
especially on high-resolution images. We demonstrate that,
no matter with or without the multi-grid algorithm, managers
can significantly improve the performance of MLLMs on 20
downstream datasets across different categories of capabilities,
images, and resolutions. Further analysis reveals that both
the manager and the multi-grid algorithm can be viewed as
a plugin that improves the input visual representation. The
manager introduces different levels of semantic knowledge
into MLLMs, which can increase the diversity of attention
weights and attention heads, thus helping guide the attention
of MLLMs that use the multi-grid algorithm. Their synergy
can capture more diverse visual details from two orthogonal
perspectives (depth and width), mitigate the semantic ambi-
guity caused by the multi-grid algorithm and further improve
performance.

II. PRELIMINARY

We briefly introduce the basic components of Two-Tower
VLMs used by METER, BridgeTower, and ManagerTower.
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Fig. 2. Brief illustrations of LLaVA-OV-Manager. The base image and grids
are encoded independently. Hollow arrows indicate the transmission of multi-
layer visual representations aggregated by managers to the LLM at intervals.

A. Visual Encoder
CLIP-ViT, the visual encoder of CLIP [8], has been widely

used in VLMs [6], [13]. Each input image is first transformed
into a flattened sequence of patches, with a [class] token
added at the beginning. Following a linear projection, position
embeddings are added to the sequence to obtain the visual
input V0. The ℓ th visual layer representation is computed as:
Vℓ = EncoderVℓ (Vℓ−1), ℓ = 1 . . . LV, where ℓ is the layer
index and LV is the number of layers in the visual encoder.

B. Textual Encoder
RoBERTa [9] is widely used in VLMs [6], [14] due to

its robust performance. The input text is tokenized with the
byte-level Byte-Pair Encoding (BPE) [15], [16]. [<s>] and
[</s>] tokens are added to the start and end of the sequence,
respectively. Word embeddings and positional embeddings are
then applied to the tokenized sequence to generate the visual
input T0. Similarly, the ℓ th textual layer representation is
computed as: Tℓ=EncoderTℓ (Tℓ−1), ℓ=1 . . . LT, where LT

denotes the number of layers in the textual encoder.

C. Cross-Modal Encoder
We use the transformer encoder [17] with a co-attention

mechanism [18] as the cross-modal encoder. In each cross-
modal layer, both modalities are equipped with a multi-
head self-attention (MSA) block, a multi-head cross-attention
(MCA) block, and a feed-forward (FFN) block. The MCA
block allows the visual part of the cross-modal encoder to at-
tend to the textual part and vice versa. EncoderCℓ , ℓ=1 . . . LC

denotes the ℓ th cross-modal layer, where LC is the number of
cross-modal layers. For brevity, it is computed as:

C̃V
ℓ = CV

ℓ−1, (1)

C̃T
ℓ = CT

ℓ−1, (2)

CV
ℓ ,C

T
ℓ = EncoderCℓ (C̃

V
ℓ , C̃

T
ℓ ), (3)

where CV
ℓ ,C

T
ℓ are the visual and textual part of output

representation of the ℓ th layer, C̃V
ℓ , C̃

T
ℓ are inputs of each part.

CV
0 ,C

T
0 are initialized with the last-layer representations from

unimodal encoders: CV
0 = VLV

WV,C
T
0 = TLT

WT, where
WV,WT are linear cross-modal projections. In this work, we
use the same default setting as METER and BridgeTower for
a fair comparison: pre-trained unimodal encoders with LV =
LT=12, randomly-initialized cross-modal encoder with LC=
6, and only top N=6 unimodal layer representations are used.
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Fig. 3. An illustration of ManagerTower shows that each cross-modal layer includes a textual manager and a visual manager. Top N=6 unimodal layer represen-
tations T,V∈RN×L×D along with the representations from the previous cross-modal layer CT

ℓ−1,C
V
ℓ−1, ℓ=1 . . . 6 are input into the textual manager MT

ℓ

and the visual manager MV
ℓ , respectively. N refers to the number of pre-trained unimodal experts the model uses, and L denotes the length of the input sequence.

III. MANAGER DESIGN

Fig. 3 illustrates the overall framework of ManagerTower.
It introduces managers in each cross-modal layer to aggregate
insights from different levels of pre-trained unimodal experts.
Under the Two-Tower VLM architecture, we will elaborate on
the detailed design schema for the three types of managers, and
conclude with the cross-modal encoder with our managers.1

A. Static Aggregation Manager (SAM)

The effectiveness of layer fusion in learning comprehensive
representations has been well demonstrated [10], [19], [20].
Inspired by this, we aim to apply this technique to VLMs. As
a preliminary exploration, we adopt the linear combination of
layers method [10], which is a simple yet effective way that
aggregates the representations of previous layers using learned
weights in each encoder layer. We directly adapt it to aggregate
both unimodal and cross-modal representations of all previous
layers and call it the Static Aggregation Manager (SAM). The
calculation for the ℓ th visual manager is given by:

MV
ℓ (V7, . . . ,V12,C

V
1 , . . . ,C

V
ℓ−1) =

6∑
i=1

WV,ℓ
i ⊙ LN(Vi+6)+

ℓ−1∑
i=1

WV,ℓ
i+6 ⊙ LN(CV

i ),
(4)

where MV
ℓ represents the manager for the visual part of the

ℓ th cross-modal layer, and WV,ℓ ∈ R(6+ℓ−1)×D is a learn-
able parameter matrix. ⊙ denotes the element-wise product
operation, and LN(·) refers to Layer Normalization [21]. We
then omit the superscript V,ℓ of W for brevity. W can be
seen as the learned aggregation weight and normalized by the
softmax function with a learnable temperature. We initialize
W with 1

6+ℓ−1 on average to assign equal weights to the
representations from all previous layers.

However, directly applying SAM to VLMs does not result
in an expected performance improvement over BridgeTower,
and instead leads to a notable decrease in performance. We

1Details about pre-training and fine-tuning are described in Appendix B-F.
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Fig. 4. Cosine similarity between the aggregated unimodal/cross-modal
representations of each pair of consecutive textual/visual managers.

hypothesize that this performance drop is due to the average
initialization of W. It may not be suitable for both cross-
modal and pre-trained unimodal layer representations as they
have different numerical scales. To test this hypothesis, we
propose dividing the parameter matrix W into unimodal and
cross-modal parts, and initializing them with 1

6 and 1
ℓ−1 , re-

spectively,2 and also learn the softmax temperature separately.
The experimental result shows a significant improvement over
the direct application of SAM, though the improvement is still
somewhat limited compared to BridgeTower. These observa-
tions provide a compelling argument for re-examining how
to aggregate multi-layer pre-trained unimodal representations.

B. Static Aggregation Unimodal Manager (SAUM)

Since the aggregated representations derived from Equa-
tion (4) consist of an unimodal part and a cross-modal

2We also experimented with other initialization methods: one, progressive,
exponential moving average, BridgeTower-like one-hot, etc., but the results
were similar to or worse than this initialization.
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Fig. 5. An illustration of how the aggregated unimodal representations AV ∈RL×D are calculated in the visual AAUM. CA refers to the cross-attention
mechanism. N=6. For simplicity, we omit LN and softmax function.

part, we calculate the cosine similarity between aggregated
unimodal/cross-modal representations of each pair of consec-
utive textual/visual managers. This can help further analyse
insights aggregated in different SAMs, i.e., inputs to different
cross-modal layers. As shown in Fig. 4, for SAMs, the
unimodal similarity remains close to 1, while the cross-
modal similarity increases with depth and tends toward 1.
This suggests that, the unimodal representations aggregated
by different SAMs are nearly identical, and the aggregated
cross-modal representations get more similar with depth.

We hypothesize that, since different SAMs provide similar
aggregated unimodal representations for each cross-modal
layer, the representations from more preceding cross-modal
layers may bring redundant information to confuse the man-
agers. This leads to aggregated cross-modal representations
converging to indistinguishable vectors as the depth increases.

To address this, we propose focusing on aggregating insights
from pre-trained unimodal experts and retaining only the
representation from the previous cross-modal layer. We refer
to it as the Static Aggregation Unimodal Manager (SAUM).
The calculation of the ℓ th visual manager computes as:

MV
ℓ (V7, . . . ,V12,C

V
ℓ−1) =

6∑
i=1

Wi ⊙ LN (Vi+6)+WC ⊙ LN(CV
ℓ−1),

(5)

where W ∈R6×D and WC ∈R1×D are learnable parameter
matrices, initialized with 1

6 and 1 on average, respectively. The
softmax with a learnable temperature only normalizes W.

The substantial improvement observed compared to
BridgeTower provides empirical support for our hypothesis.
Furthermore, as shown in Fig. 4, the cross-modal similarity of
SAUM decreases with the depth, suggesting that more com-
prehensive and distinguishable cross-modal representations are
aggregated as the depth increases.

C. Adaptive Aggregation Unimodal Manager (AAUM)

Despite the significant performance gains achieved by
SAUM, it still faces two key limitations: (i) W, the learned
aggregation weight for unimodal representations is nearly
identical across managers in different cross-modal layers, as
demonstrated in Fig. 4, which contradicts the intuition that the
requirement for unimodal semantic knowledge should vary
among cross-modal layers; (ii) during inference, for each
manager, the same aggregation weight W learned during
training is applied to all tokens in different samples, which

does not align with the intuition that the need for unimodal
semantic knowledge should vary among tokens and samples.

To address the above limitations, we propose the Adaptive
Aggregation Unimodal Manager (AAUM). During training
and inference, AAUM can adaptively utilize different levels of
unimodal semantic knowledge from pre-trained unimodal ex-
perts for different tokens across different samples. Take the vi-
sual AAUM for example, the ℓ th visual manager computes as:

MV
ℓ (V7, . . . ,V12,C

V
ℓ−1) =

6∑
i=1

WA,i ⊙ LN (Vi+6)+WC⊙LN(CV
ℓ−1),

(6)

WA = softmax(LN(CV
ℓ−1)×WM + ϵ), (7)

where WM ∈ RD×6 denotes a linear projection layer. The
generated aggregation weights WA∈R6×L×D can adaptively
aggregate unimodal representations from different levels of
pre-trained unimodal experts for each token. The softmax
function features a learnable temperature and ϵ ∼ N (0, 1

62 )
denotes a Gaussian noise for exploration of aggregation [22].

Furthermore, to help managers better exploit unimodal
semantic knowledge, we propose replacing the visual query
CV

ℓ−1 in Equation (7) with the cross-modal fused query
CA(CV

ℓ−1,C
T
ℓ−1) to further improve performance, where CA

is a cross-attention mechanism.

D. Cross-Modal Encoder with Managers
Since the 1st cross-modal layer lacks the representation of

the previous cross-modal layer as the query, we introduce
SAUM in the 1st cross-modal layer and AAUMs in the
subsequent layers. Therefore, Equation (1) & (2) for the 1st

cross-modal layer with SAUMs is computed as:

C̃V
1 = MV

1 (V7, . . . ,V12), (8)

C̃T
1 = MT

1 (T7, . . . ,T12), (9)

For the 2nd and subsequent cross-modal layers with AAUMs:

C̃V
ℓ = MV

ℓ (V7, . . . ,V12,C
V
ℓ−1,C

T
ℓ−1), (10)

C̃T
ℓ = MT

ℓ (T7, . . . ,T12,C
T
ℓ−1,C

V
ℓ−1), (11)

where we omit the modality type and layer index embeddings
added to unimodal layer representations V,T in the above
equations for simplicity.

Fig. 5 shows the adaptive aggregation of insights from pre-
trained visual experts in AAUMs, which corresponds to the
unimodal (right) part of Equation (6). As for SAUMs, the
learned weights W ∈ R6×D are directly broadcast to WA,
and then they aggregate insights similarly to AAUMs.
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TABLE I
PERFORMANCE OF DIFFERENT TYPES OF MANAGERS AND QUERIES ON

VQAV2 AND FLICKR30K. RMEAN INDICATES THE MEAN RECALL
METRICS FOR IMAGE–TEXT RETRIEVAL. BT DENOTES BRIDGETOWER.

Type Visual Query Weight Test-Dev RMEAN

BT - N× 1 75.91 93.33

SAM - N× 1 76.19 93.57
- N×D 76.18 93.73

SAUM - N× 1 76.38 93.75
- N×D 76.55 93.82

AAUM CV
ℓ−1 N× L 76.52 93.84

CV
ℓ−1,C

T
ℓ−1 N× L 76.65 93.97

Concat- V,CV
ℓ−1 N× L×D 76.38 93.78

Attention V,CV
ℓ−1,C

T
ℓ−1 N× L×D 76.43 93.83

Cross- CV
ℓ−1 N× L 76.41 92.15

Attention CV
ℓ−1,C

T
ℓ−1 N× L 76.45 92.61

IV. EXPLORATION ON TWO-TOWER VLM

A. Implementation Details

ManagerTower comprises a pre-trained textual encoder,
RoBERTaBASE with 124M parameters, a pre-trained visual
encoder, CLIP-ViT B-224/16 with 86M parameters, and a ran-
domly initialized 6-layer cross-modal encoder with managers,
totaling 113M+12M parameters. The detailed setting of the
cross-modal encoder is the same as BridgeTower. The maxi-
mum length of the text sequence is set to 50, and the image
patch size is 16×16. For a fair comparison with BridgeTower,
we use an image resolution of 384 × 384 for Flickr30K and
576 × 576 for VQAv2. AdamW [23] optimizer with a base
learning rate of 2e−5 and warmup ratio of 0.1 is used.

B. Investigation and Analysis

In this section, we investigate various designs of man-
agers and evaluate the performance by directly fine-tuning on
VQAv2 and Flickr30K without VLP. Experimental settings are
the same as BridgeTower for a fair comparison. Note that uni-
modal encoders are initialized with their pre-trained weights.

1) Type of Manager: We first explore the performance
of different types of managers and queries. Take the visual
manager for example, based on the top N=6 visual layer rep-
resentations V∈RN×L×D from CLIP-ViT, different managers
provide the aggregation weights that can be broadcast to WA

for aggregating insights from pre-trained visual experts.
From the perspective of aggregation weights WA, SAM and

SAUM are static sentence-level managers that share the same
aggregation weights for all tokens across different samples. In
contrast, AAUM is an adaptive token-level manager that adap-
tively generates different aggregation weights for different
tokens across different samples. Besides, we also implement
Equation (7) with common cross- and concat-attention
mechanisms for comparison, detailed in Algorithm B-D.

The results are summarized in Table I. By focusing
on aggregating insights from pre-trained unimodal experts,
SAUM demonstrates superior performance over SAM on
both datasets. Furthermore, with the help of the cross-modal
fused query, AAUM significantly outperforms the other man-
agers. This highlights the effectiveness of adaptive token-

TABLE II
PERFORMANCE OF BRIDGETOWER (BT) AND MANAGERTOWER (OURS)

WITH DIFFERENT NUMBERS OF CROSS-MODAL LAYERS.

LC
VQAv2 Test-Dev Flickr30K RMEAN

BT Ours BT Ours
2 74.86 75.47 (↑ 0.61) 92.45 93.31 (↑ 0.86)
3 75.33 76.04 (↑ 0.71) 92.50 93.41 (↑ 0.91)
4 75.74 76.26 (↑ 0.52) 92.76 93.59 (↑ 0.83)
6 75.91 76.65 (↑ 0.74) 93.33 93.97 (↑ 0.64)
8 75.89 76.47 (↑ 0.58) 93.03 93.65 (↑ 0.62)
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Fig. 6. VQAv2 Test-Dev Performance using different numbers of unimodal
representations in ManagerTower (LC=3,N = 2 . . . 8).

level aggregation with the cross-modal fused query over static
sentence-level aggregation. Notably, the cross-modal fused
query incorporates both visual and textual parts of the pre-
vious cross-modal layer representation, which can better help
managers correctly aggregate unimodal semantic knowledge
required by the current cross-modal layer.

2) Number of Cross-Modal Layers: We conduct a com-
parison between ManagerTower and BridgeTower with dif-
ferent numbers of cross-modal layers in Table II, to further
assess the effectiveness of ManagerTower. Regardless of the
number of cross-modal layers, ManagerTower consistently
and significantly outperforms BridgeTower on both datasets.
More interestingly, the performance of ManagerTower with
LC =3 is even better than that of BridgeTower with LC =6
(76.04>75.91, 93.41>93.33).

In contrast to BridgeTower, N, the number of top unimodal
layer representations used by ManagerTower, is not bound to
the number of cross-modal layers LC and can be flexibly ad-
justed. The default setting is N=6. Therefore, ManagerTower
actually utilizes the same number of unimodal layer represen-
tations as BridgeTower, but achieves superior performance
with only half the number of cross-modal layers. This further
highlights the flexibility and effectiveness of ManagerTower
in adaptive aggregation of unimodal semantic knowledge, in
contrast to layer-by-layer exploitation in BridgeTower.

3) Number of Unimodal Experts: We further explore the
impact of varying N in ManagerTower with LC = 3. As
shown in Fig. 6, there exist two interesting observations: (i)
ManagerTower (LC = 3,N = 3) outperforms BridgeTower
(LC = 3,N = 3), suggesting that when the same number
of unimodal layer representations are introduced, Manager-
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TABLE III
COMPARISONS WITH PREVIOUS MODELS ON 4 DOWNSTREAM DATASETS AFTER VLP. THE BEST SCORE IS BOLDED. ∗ INDICATES THAT THE MODEL ALSO

USES VG-QA DATA TO FINE-TUNE ON VQAV2.

Model # Pre-train VQAv2 SNLI-VE NLVR2 Flickr30K
Images Test-Dev Test-Std Dev Test Dev Test-P IR@1 TR@1

Base-size models pre-trained on 4M public data
ViLTBASE [24] 4M 71.26 - - - 75.70 76.13 64.4 83.5
UNITERBASE [25] ∗ 4M 72.70 72.91 78.59 78.28 77.18 77.85 72.52 85.90
UNIMOBASE [26] 4M 73.79 74.02 80.00 79.10 - - 74.66 89.70
ALBEFBASE [27] ∗ 4M 74.54 74.70 80.14 80.30 80.24 80.50 82.8 94.3
METER-SwinBASE [6] 4M 76.43 76.42 80.61 80.45 82.23 82.47 79.02 92.40
VLMOBASE [28] 4M 76.64 76.89 - - 82.77 83.34 79.3 92.3
METER-CLIPBASE [6] 4M 77.68 77.64 80.86 81.19 82.33 83.05 82.22 94.30
BridgeTowerBASE [7] 4M 78.66 78.73 81.11 81.19 81.85 83.09 85.83 94.73
ManagerTowerBASE (Ours) 4M 79.39 79.15 81.26 81.44 82.81 83.34 86.56 95.64
Models pre-trained on more data and/or with larger size

UNITERLARGE [25] ∗ 4M 73.82 74.02 79.39 79.38 79.12 79.98 75.56 87.30
UNIMOLARGE [26] 4M 75.06 75.27 81.11 80.63 - - 78.04 89.40
ALBEFBASE [27] ∗ 14M 75.84 76.04 80.80 80.91 82.55 83.14 85.6 95.9
SimVLMBASE [29] 1.8B 77.87 78.14 84.20 84.15 81.72 81.77 - -
BLIPBASE [30] ∗ 129M 78.24 78.17 - - 82.48 83.08 87.3 97.3
SimVLMLARGE [29] 1.8B 79.32 79.56 85.68 85.62 84.13 84.84 - -
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Fig. 7. A visualization of aggregation weights of textual and visual AAUMs in each cross-modal layer after VLP. The X-axis shows the index of the unimodal
expert, and the legend shows the index of the cross-modal layer.

Tower allows more effective aggregation of unimodal semantic
knowledge, thus facilitating vision–language alignment and
fusion in each cross-modal layer; (ii) the performance of
ManagerTower initially improves gradually, but decreases after
N> 6. We assume that lower-layer unimodal representations
may not help ManagerTower learn vision–language alignment
and fusion, and may also increase the computational cost. This
is also consistent with BridgeTower’s observations.

C. Comparison with Previous Arts

1) Pre-train Settings: We pre-train ManagerTower with two
standard VLP objectives, masked language modeling (MLM)
and image–text matching (ITM), on the widely-used 4M
public data: Conceptual Captions [31], SBU Captions [32],
MSCOCO Captions [33], and Visual Genome (VG) [34]. The
pre-train settings are the same as BridgeTower and METER
for a fair comparison. ManagerTower is pre-trained for 100k
steps with a batch size of 4096 and a learning rate of 1e−5.
The image resolution for VLP is 288× 288 and only center-
crop [8] is used without any data augmentation.

2) Main Results: Table III shows the performance of
ManagerTower compared with other previous works on 4
downstream datasets. With only 4M VLP data, ManagerTower

achieves superior performances on these datasets. Based on
the same pre-training and fine-tuning settings and unimodal
backbones as previous strong Two-Tower VLMs, i.e., ME-
TER and BridgeTower, ManagerTower achieves significant
improvements on all datasets, especially 79.15% accuracy
on VQAv2 Test-Std, 86.56% IR@1 and 95.64% TR@1 on
Flickr30K. This further demonstrates that with all other factors
fixed, compared to BridgeTower that introduces bridges to
METER, managers in ManagerTower allow effective aggrega-
tion of multi-layer unimodal representations via well-designed
managers. Managers can adaptively aggregate more required
unimodal semantic knowledge to facilitate comprehensive
vision–language alignment and fusion in each cross-modal
layer. Notably, ManagerTower not only outperforms many
base-size models pre-trained on 4M data, but also surpasses
some models pre-trained on more data and/or with larger size.

D. Visualization of Aggregation Weights

We delve into managers by visualizing the average ag-
gregation weights WA they generate across all samples in
VQAv2 validation set in each cross-modal layer in Fig. 7. For
each row, the first column displays the learned aggregation
weights of SAUMs, while the remaining five columns show
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the aggregation weights generated by AAUMs and share the
Y-axis to provide easy horizontal comparison.

Interestingly, the aggregation weight distributions from
managers are completely different from the one-hot distri-
butions manually specified in BridgeTower, and there are two
distinct trends: (i) For SAUMs in the 1st cross-modal layer,
vertically, textual manager exhibits increasing and then de-
creasing weights, most favoring T10, unlike T12 and T7 used
in METER and BridgeTower, respectively; visual manager
exhibits increasing weights, most favoring V12, similar to
METER and BridgeTower. (ii) For AAUMs in the 2nd to
6th cross-modal layers, horizontally, whether textual or visual
managers, they exhibit diverse aggregation weight distribu-
tions in different layers.

Overall, by comparing the aggregation weight distributions
horizontally and vertically, we observe that ManagerTower
learns diverse distributions in different cross-modal layers.
This provides strong evidence that the introduced managers
can adaptively aggregate unimodal semantic knowledge for
more comprehensive vision–language representation learning.

V. EXPLORATION ON MLLM

A. Motivation

As stated in Sec. I, in principle, the manager is a lightweight
and flexible plugin that can be easily integrated into various
VLMs. Naturally, we can take the manager as a plugin and fur-
ther explore its effectiveness in the latest MLLM architecture,
which typically consists of a visual encoder and an LLM.

Moreover, traditional Two-Tower VLMs and MLLMs both
use ViTs as their visual encoder, which have to resize the
input image to a fixed resolution. This greatly limits their
effectiveness in handling high-resolution images due to the
loss of visual details. Recent multi-grid MLLMs [11], [35],
[36] overcome this limitation by training with the multi-grid
algorithm.3 During training and inference, they divide the
padded input image into multiple image grids, and encode
both the resized base image and multiple image grids with the
visual encoder independently. Then, they combine the encoded
features to obtain a longer input visual representation with
more visual details.

Compared the manager with the multi-grid algorithm, they
both can be seen as a plugin that improves the input visual
representation and thus improves the VL representation. They
are two orthogonal directions to supplement visual details,
either by (i) deeper: introducing aggregation of insights
from pre-trained visual experts at different levels/depths; or
(ii) wider: directly improving image resolution by encoding
multiple image grids, i.e., a wider receptive field. Hence, we
are motivated to explore the effectiveness of managers not only
in MLLMs, but also in multi-grid MLLMs, to investigate the
synergy between the manager and the multi-grid algorithm.

Besides, with the help of the MLLM architecture and
the multi-grid algorithm, we can further extend downstream
datasets, not only limited to traditional general datasets with
low-resolution natural images, e.g., VQAv2 and Flickr30K

3An illustration of the multi-grid algorithm can be found in Appendix C-A.

used in Sec. IV, but also text-rich datasets with high-resolution
abstract images (documents, charts, etc.), e.g., DocVQA [37]
and OCRBench [38], and real-world multimodal datasets.
Without fine-tuning on specific datasets, we can provide more
comprehensive and challenging zero-shot evaluations of the
effectiveness of managers.

Overall, we aim to explore the effectiveness of managers
in more diverse downstream datasets, to answer the questions:
(RQ1) Can the manager be used as a plugin to help MLLMs
and multi-grid MLLMs? (RQ2) When and why can managers
improve performance, especially for multi-grid MLLMs?

B. Experimental Settings

1) Baseline: We take LLaVA-OneVision-0.5B-SI [11] as
our baseline (LLaVA-OV for short), which is a widely used
open-source multi-grid MLLM. It consists of a pre-trained
27-layer visual encoder SigLIP [39] with 0.4B parameters, a
pre-trained 24-layer LLM Qwen2-0.5B-Instruct [40] with 0.5B
parameters and a 2-layer MLP with 1.8M parameters. It re-
leases most of the training data, which helps us reproduce not
only the multi-grid version (Baseline+Grid), but also the plain
version (Baseline). We follow the same training settings as the
original LLaVA-OV and use about 8M data samples for multi-
stage training of the autoreregressive objective for answer
tokens. The maximum length of the input token sequence is
set to 16384, and the image patch size is 14×14. The last layer
of the visual encoder is removed, and the visual representation
of the penultimate layer is projected into the LLM word
embedding space as the visual part of the input tokens of the
LLM. More details can be found in Appendix C-E.

2) Adapt Manager to MLLM: Since the LLM in MLLM
acts as both a textual module and a cross-modal module,
as shown in Fig. 2, we directly introduce visual managers
in LLaVA-OV, to aggregate multi-layer visual representa-
tions and inject them into the LLM at equal intervals, thus
obtaining LLaVA-OV-Manager. Similar to LLaVA-OV, we
train two versions of LLaVA-OV-Manager and name them as
Baseline+Manager and Baseline+Grid+Manager, respectively.
Managers aggregate insights from the top half of the visual
encoder to improve the visual representations of both the
base image and image grids independently. We inject 6 visual
managers into the LLM with the interval of 4 as the default
setting. Since AAUM achieves similar performance compared
to SAUM in LLaVA-OV-Manager, we directly use SAUM for
better efficiency in the following experiments.4 For brevity,
the ℓ th LLM layer with SAUM computes as:

C̃V
ℓ = MV

ℓ (V14, . . . ,V26)⊙ ϵ+CV
ℓ−1, (12)

CV
ℓ ,C

T
ℓ = EncoderCℓ (C̃

V
ℓ ,C

T
ℓ−1), (13)

MV
ℓ (V14, . . . ,V26,C

V
ℓ−1) =

13∑
i=1

Wi ⊙Vi+13. (14)

Equation (14) is an optimized version of SAUM for MLLM.
The original version does not work well in our preliminary
experiments, as the LLM in MLLM has been well pre-
trained, rather than the random-initialized cross-modal module

4Discussions about managers in the MLLM can be found in Appendix A-A.
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Fig. 8. Zero-shot performance of four baselines on 20 datasets. The overall
average score and the average score of each capability category are shown.

in ManagerTower. Hence, we remove the WC, LN, and
softmax in Equation (5), and initialize W to zero, to reduce
the interference with the pre-trained LLM in the early training
stage [41], [42], which helps SAUM work well in MLLM.
ϵ ∼ U(0.98, 1.02) is a multiplicative jitter noise uniformly
sampled for exploration across experts during training [22].

3) Evaluation: We follow the same evaluation settings as
the original LLaVA-OV, to evaluate the zero-shot performance
of our four baselines on 20 datasets via their official evaluation
tool, lmms-eval.5 From the perspective of capability cate-
gories, we can divide them into the following four categories:

• General: VQAv2 [2], OKVQA [43], GQA [44], MMVet [45],
SEED-Bench [46], RealWorldQA [47].

• Text-rich: TextVQA [48], ChartQA [49], DocVQA [37], In-
foVQA [50], OCRBench [38].

• Knowledge: AI2D [51], ScienceQA [52], MMMU [53], Math-
Vista [54].

• Real-world: ImageDC [55], MM-LiveBench (07, 09) [56],
LLaVA-Wild [57], LLaVA-Wilder [35].

For simplicity, we use the average score of the corresponding
metric score (normalize to [0, 100]) as the overall performance
of baselines. We also calculate the average score of each capa-
bility category for in-depth analysis. Furthermore, since these
datasets contain not only low-resolution natural images, but
also high-resolution abstract images, we can also analyse and
divide these datasets from the perspective of image categories
“Natural, Abstract, Hybrid” and resolutions “Low, High”.6

C. Results and Computational Budget

Fig. 8 shows the zero-shot performance of four baselines
on 20 datasets after training with about 8M data samples
following the original LLaVA-OV.7 The difference between
baselines is with or without the multi-grid algorithm and man-
agers. Similar to existing multi-grid MLLMs, we can observe
that the multi-grid algorithm greatly helps Baseline and Base-
line+Manager, especially on text-rich datasets, abstract im-
ages, and high-resolution images. When introducing managers,
whether the multi-grid algorithm is enabled or not, the per-
formance of Baseline+Manager and Baseline+Grid+Manager
is significantly improved over the corresponding Baseline
and Baseline+Grid on different categories of capabilities,
images, and resolutions. Especially on datasets with capability

5https://github.com/EvolvingLMMs-Lab/lmms-eval
6More evaluation details can be found in Appendix C-F.
7Detailed results of each dataset can be found in Appendix ??.
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Fig. 9. Ablation study of visual representation selection on 9 datasets.

TABLE IV
COMPUTATIONAL BUDGET AND AVERAGE OVERALL PERFORMANCE OF

FOUR BASELINES ON 20 DATASETS. THE NUMBERS IN PARENTHESES
DENOTE THE RELATIVE CHANGE COMPARED TO BASELINE.

Model # Params Training Time Inference Time Performance
(M) (ms/sample) (ms/sample) Overall

Baseline 893.62 11.84 13.97 50.61
+ Manager 893.70 12.22 (×1.03) 14.54 (×1.04) 51.67 (↑1.06)
+ Grid 893.62 51.95 (×4.39) 23.47 (×1.68) 53.87 (↑3.26)
+ Grid + Manager 893.70 54.17 (×4.58) 24.45 (×1.75) 55.21 (↑4.60)

category of “General, Knowledge”, Baseline+Manager even
achieves better performance than Baseline+Grid with signifi-
cantly lower computational cost.

Table IV shows the computational budget of baselines. We
measure the average training time based on two 8×NVIDIA
A100 GPU servers, and the average inference time on VQAv2
validation set with a single A100 GPU. Compare to Baseline,
the multi-grid algorithm significantly increases the training
time (×4.39), inference time (×1.68) and performance (↑
3.26). No matter with or without the multi-grid algorithm,
managers only brings negligible parameter overhead (0.08M)
and computational cost (×1.04), but significantly improves
performance (↑1.06 and ↑1.44) on 20 datasets.8

In summary, for our RQ1, Fig. 8 and Tab. IV demonstrate
that the manager is a lightweight, efficient and effective
plugin that helps MLLMs and multi-grid MLLMs achieve
better performance in different capability categories, image
categories and resolutions, with acceptable computational
cost. More interestingly, the collaboration between managers
and the multi-grid algorithm not only supplements visual
details from the depth and width directions, respectively, to
improve performance, but also further boosts performance by
their synergy (1.44>1.06).

D. Ablation Study on Adaptation of Managers in MLLMs

In this section, we further explore the adaptation of man-
agers in MLLMs. We use 1

4 of the training data (2M samples)
and evaluate on 9 datasets for efficiency and robustness.

1) Visual Representation Selection: As shown in Fig. 9,
overall, no matter what visual representations are selected,
managers consistently improve the performance of Baseline.
Similar to the observations in both BridgeTower and Man-
agerTower, visual representations from the top half of the
visual encoder bring the best performance, and using visual

854.17/51.95 ≈ 1.04, 24.45/23.47 ≈ 1.04 and 55.21− 51.67 = 1.44.

https://github.com/EvolvingLMMs-Lab/lmms-eval
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Fig. 11. Ablation study of how manager works with multi-grid on 9 datasets.

representations from all layers leads to the lowest performance
improvement. We attribute this to the fact that the average
attention distance of the visual encoder increases with the
layer depth, especially in the top half of the visual encoder,
where most attention heads attend widely across tokens [58]
and capture global visual features.9

2) Manager Injection Times: We uniformly inject managers
into the LLM from the first layer at a fixed layer interval.
Specifically, for the LLM with LC=24, we can inject 6 man-
agers with the interval of 4. As shown in Fig. 10, the injection
times of managers will affect the performance, and the overall
trend is that performance improves with increasing injection
frequency, but with some fluctuations. Baseline+Manager can
achieve better performance than Baseline most of the time.
Compared to the injection times of 6, although injecting
managers into each LLM layer slightly increases the average
performance from 50.96 to 51.08, it also increases the com-
putational cost by about 7% in both training and inference.
Hence, we choose the injection times of 6 to achieve a good
balance between performance and computational cost.

3) Manager Meets Multi-Grid: Both the manager and the
multi-grid algorithm are plugins that can be easily combined
and integrated into MLLMs. Their direct combination means
that managers aggregate insights from pre-trained visual ex-
perts at different levels to improve the visual representations
of the base image and multiple image grids, respectively. As
shown in Fig. 11, managers greatly improve the performance
of Baseline+Grid, especially on text-rich datasets, abstract
images, and high-resolution images, which are exactly what
the multi-grid algorithm excels at. This indicates that the
manager and the multi-grid algorithm are orthogonal (depth
and width) and complementary in complementing visual de-
tails, and their synergy can further improve performance. More
interestingly, when managers only manage the base image or

9Detailed explanations and visualizations are provided in Appendix C-B
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Fig. 12. Zero-shot performance of four baselines on DocVQA validation set.

Question: What is the ”Volume (MM)” for ”Retail BSGSF”?

Category: Table / List   

Prediction:

Question: What is the heading enclosed within the box ?

Category: Layout 

Prediction:

Baseline     28,800

+ Manager     172.8

+ Grid      172.8

+ Grid + Manager    172.8

Baseline  Food and Nutrition Board

+ Manager  This side of card is for aborse

+ Grid   Food and Nutrition Board

+ Grid + Manager This side of card is for address

1

2

Fig. 13. Case studies of four baselines on DocVQA validation set. Red and
green fonts represent incorrect and correct predictions, respectively. White
lines indicate the boundaries of the image grids.

image grids, the performance is not obviously improved. We
speculate that the change in part of the visual representation
by managers may be considered as noise due to the numerical
difference between the changed and unchanged parts.

E. Detailed Analysis and Case Study
To intuitively analyse the effectiveness of managers and

answer our RQ2, we conduct a detailed analysis on different
dimensions of specific datasets, including DocVQA, SEED-
Bench, and OCRBench, and provide case studies.10

1) DocVQA: Based on the three dataset classification crite-
rion we used in Section V-B3, DocVQA is a text-rich dataset
with high-resolution abstract images. As shown in Fig. 12,
the multi-grid algorithm helps Baseline on different types of
abstract images in DocVQA. Furthermore, managers can fur-
ther improve the performance of Baseline and Baseline+Grid
on different dimensions. Take the case 1 in Fig. 13 as
an example, both managers and the multi-grid algorithm
can help Baseline capture visual details for accurate table
understanding. Interestingly, in the case 2 , both Baseline and
Baseline+Grid fail to find the heading enclosed within the box,
and take the first line of text below the box as the heading.
The multi-grid algorithm also cuts off the boxed heading, may
make it more difficult to find the heading. Baseline+Manager
can correctly find it based on the visual details provided by
different levels of semantic knowledge, but fails to recognize
all characters. With the collaboration between the manager
and the multi-grid algorithm, Baseline+Grid+Manager can
correctly find it and recognize all characters.

10More detailed analysis and case studies on ScienceQA and OK-VQA can
be found in Appendix C-C.
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Fig. 14. Zero-shot performance of four baselines on SEED-Bench.

Question: Where is the bowl of fruit located in the painting?

Options: A. Center B. Right C. Left  D. Background

Category: Instance Location

Prediction:  Baseline + Manager + Grid  + Grid + Manager
  B   D A   D

1

Question: How many pictures are in the image?

Options: A. 0  B. 3  C. 2  D. 1

Category: Instance Counting

Prediction: Baseline + Manager + Grid  + Grid + Manager
  B   D A   D

2

Fig. 15. Case studies of four baselines on SEED-Bench.

2) SEED-Bench: This is a general dataset with high-
resolution natural images. Surprisingly, as shown in Fig. 14,
the multi-grid algorithm does not improve the performance
much and even leads to performance degradation on
some dimensions, i.e., “Instance Identity, Instance Location,
Spatial Relation, Text Color Recognition”. They inspect
the category, spatial and color information about instances
in the image. Take Fig. 15 as an example, the multi-grid
algorithm cuts off objects and connected regions, leading
to higher understanding difficulty and bringing semantic
ambiguity [59]. This hinder MLLMs from perceiving the
spatial relationship between objects as well as the category
and number of objects. Moreover, managers consistently
brings performance improvements to Baseline and also help
overcome the semantic ambiguity caused by the multi-grid
algorithm by incorporating aggregation of insights from
pre-trained visual experts at different levels, especially on
“Instance Counting, Text Color Recognition”.

3) OCRBench: This is a text-rich dataset with low-
resolution hybrid images. As shown in Fig. 16, for “Artis-
tic Text Recognition, Handwriting Recognition” dimensions,
both the manager and the multi-grid algorithm can only
bring slight performance improvements or even performance
degradation to Baseline. However, the collaboration between
them can bring significant performance improvements on
Baseline+Grid+Manager. This further demonstrates that their
synergy can complement visual details from the depth and
width directions and mitigate the semantic ambiguity caused
by the multi-grid algorithm. Unexpectedly, for “Non-Semantic
Text Recognition” dimension, which focuses on character
combinations that lack semantics., the manager brings perfor-
mance degradation to both baselines. Take the cases in Fig. 17
as an example, although managers can help capture visual
details, e.g., a single quote at the end of the word, Base-
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Fig. 16. Zero-shot performance of four baselines on OCRBench. “ME” in
“Handwritten ME Recognition” is short for “Mathematical Expression”.

Category: Artistic Text Recognition
Prediction:

Baseline  playin
+ Manager playin’
+ Grid  playin
+ Grid + Manager playin’

1 2

Category: Non-Semantic Text Recognition
Prediction:

Baseline  wenarr
+ Manager wenarr
+ Grid  wenarr
+ Grid + Manager wenar

Category: Non-Semantic Text Recognition
Prediction:

Baseline  ttrebe
+ Manager ttrebe
+ Grid  ttrebe
+ Grid + Manager trebe

3

Fig. 17. Case studies of four baselines on OCRBench.

line+Grid+Manager incorrectly identifies the non-semantic
text “wenar” and “ttrebe” as semantic text “wenar” and
“trebe”,11 respectively. Different levels of semantic knowledge
brought by managers instead cause more interference, leading
to performance degradation.

In summary, for our RQ2, the manager can not only im-
prove the performance of MLLMs, but also help alleviate the
semantic ambiguity caused by the multi-grid algorithm. Hence,
their synergy can further improve performance, especially on
the perception of category, spatial, color and number informa-
tion of instances, and artistic, handwriting text recognition.

F. Visualization Analysis

To analyse the underling reasons for the collaboration im-
provement between the manager and the multi-grid algorithm
in MLLMs and further answer our RQ2, we conduct analy-
ses from the perspective of consecutive layer representation
similarity and attention weight distribution of each layer.

1) Consecutive Layer Representation Analysis: In Equa-
tion (13), the output representation of each LLM layer consists
of a visual part and a textual part. For each part, we calculate
the cosine similarity between output representations of con-
secutive layers in Baseline+Grid and Baseline+Grid+Manager.
As shown in Fig. 18, managers reduce the similarity be-
tween representations of consecutive layers, especially for
the bottom layers of MLLMs. Compare to Baseline+Grid,
changes in the similarity become more frequent and drastic
in the layers between manager injections. This indicates that
the aggregation of different levels of semantic knowledge
introduced by managers can supplement more insights and
visual details, and facilitate more diverse vision–language
representation learning in subsequent layers. It is worth noting
that although we do not have textual managers, the textual

11“wenar”: a surname of a person. “trebe”: a German noun for a runaway.
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Fig. 18. Cosine similarity between output representations of consecutive
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Fig. 19. Average entropy of attention weight distributions in each layer.

part of the output representation is causally influenced by the
visual part in its front, resulting in a similar phenomenon.

2) Attention Weight Distribution Analysis: The attention
mechanism [60] is a key component in deep neural networks,
where attention weight distributions reflect how much attention
each token pays to the other tokens. Following [61], we
delve into attention weight distributions from the following
two angles to provide an intuitive and interpretable analysis.
Besides, for the attention weight distribution of each layer, we
focus on the self-attention of the visual part, and the attention
from the textual part at the back to the visual part at the front.12

a) Attention Entropy: The average entropy of attention
weight distributions reflects the diversity of attention weights
in each layer. Higher/lower attention entropy means that the
attention weights are concentrated on more/few tokens. As
shown in Fig. 19, compared to Baseline+Grid, managers
increase the attention entropy in each layer. Such broad atten-
tion can help Baseline+Grid+Manager handle more complex
and varied input, leading to greater diversity and flexibility, and
thereby preventing focusing too narrowly on certain aspects
of the input. Besides, interestingly, the entropy of textual-to-
visual attention becomes more stable and significantly larger
than the entropy of visual self-attention when managers man-
age the visual part of the input.

b) KL Divergence: The average Kullback–Leibler (KL)
divergence [62] between attention weight distributions of dif-
ferent attention heads reflects the diversity of attention heads
in each layer. Higher/lower KL divergence means that different
attention heads pay attention to different/similar tokens. As
shown in Fig. 20, compared to Baseline+Grid, managers
increase the KL divergence between attention heads in most
layers. Intuitively, low diversity across different attention heads
may limit the model’s ability to capture diverse features.
Managers can help Baseline+Grid+Manager focus on different

12Attention weight distribution analysis of Baseline and Baseline+Manager
can be found in Appendix C-D.
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Fig. 20. Average KL divergence between attention weight distributions of
attention heads in each layer.

aspects of the sequence to capture more diverse features, and
prevent excessive focus on similar or redundant information.

In summary, for our RQ2, the manager introduces the
aggregation of insights from visual experts at different levels
into multi-grid MLLMs, which can increase the diversity of
attention weights and attention heads. This can help guide the
attention of multi-grid MLLMs, thus capturing more diverse
visual details from both the manager (depth) and the multi-
grid algorithm (width) directions, and also alleviating the
semantic ambiguity caused by the multi-grid algorithm.

VI. RELATED WORK

A. Vision–Language Models

Although VLMs differ in model architecture, most of them
use unimodal encoders to extract visual and textual represen-
tations, and then fuse them in a cross-modal module, which
can be unified into the Two-Tower architecture [6], [8], [18],
[24]–[30], [63]–[70]. As a representative model, METER [6]
adopts pre-trained unimodal encoders and feeds their last-
layer representations into the cross-modal encoder with the
co-attention mechanism. BridgeTower [7] proposes building
layer-by-layer connections between the top unimodal layers
and each cross-modal layer to leverage multi-layer unimodal
representations. However, they still cannot utilize adaptive
and effective aggregation of multi-layer pre-trained unimodal
representations in each cross-modal layer.

B. Utilization of Multi-Layer Unimodal Representations

Different layers of pre-trained unimodal encoders encoding
different levels of semantic knowledge are well demonstrated
in vision [58], [71], [72] and language [73]–[75]. As shown
in prior work [58], [71], lower layers of ViTs tend to attend
both locally and globally, while higher layers primarily focus
on global features. Similarly, previous work [75] found that
the intermediate layers of BERT [76] encode a hierarchy of
linguistic knowledge, with surface features at the bottom, syn-
tactic features in the middle, and semantic features at the top.

Furthermore, the effectiveness of multi-layer representation
aggregation in learning comprehensive representations has
been well demonstrated in vision [77]–[83] and language [10],
[19], [20], [84]. Hence, some Two-Tower VLMs and MLLMs
have explored the utilization of pre-trained multi-layer uni-
modal representations for better vision–language representa-
tion learning [6], [7], [85]–[87]. They simply feed the weighted
sum or fusion of multi-layer unimodal representations into the
first cross-modal layer, or exploit multiple top unimodal layer
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representations layer by layer in each cross-modal layer, which
is not only ineffective but also lack scalability. In this work,
we take each layer of the pre-trained unimodal encoder as an
unimodal expert, and the output representation of each layer
as the insight of the unimodal expert into the current input.
We propose managers to adaptively aggregate insights from
unimodal experts at different levels for each cross-modal layer.

C. Multimodal Large Language Models

With the rapid development of Large Language Models
(LLMs) [40], [88]–[90], MLLMs, a new class of VLMs that
introduces a LLM as both a textual module and a cross-
modal module, have emerged and shown superior zero-shot
performance on various downstream tasks [11], [35], [91].
Although most existing MLLMs only feed the last-layer
visual representation from the visual encoder into the LLM
for simplicity and efficiency, some of them have explored
different ways to improve the visual representation to further
improve performance, especially high-resolution scenarios,
such as: (i) adopt high-resolution visual encoders [92]–[95],
which require additional high-resolution training data; (ii)
adopt the multi-grid algorithm to directly split the image
into multiple image grids [12], [36], [96], [97], which is a
resource-efficient way but may bring semantic ambiguity [59],
[98]. Since both the manager and the multi-grid algorithm can
be viewed as a plugin that improves the visual representation
from two orthogonal perspectives (depth and width), we
further explore the effectiveness of managers in MLLMs
and multi-grid MLLMs and the underlying reasons for their
collaboration to improve performance based on extensive
experiments and detailed analyses.

VII. CONCLUSION

In this work, we propose Manager, a lightweight, efficient
and effective plugin that helps better utilize multi-layer pre-
trained unimodal representations for vision–language repre-
sentation learning, and demonstrate its effectiveness in both
Two-Tower VLM and MLLM architectures. The manager
can adaptively aggregate more required unimodal semantic
knowledge to facilitate comprehensive vision–language align-
ment and fusion in each cross-modal layer. We first propose
ManagerTower, a novel Two-Tower VLM that aggregates in-
sights from pre-trained unimodal experts at different levels via
introduced managers in each cross-modal layer. The feasibility
of various designs of managers is well explored, and the
effectiveness of ManagerTower on 4 downstream tasks is well
demonstrated. Next, we further validate the effectiveness of
managers in the latest MLLM architecture. Managers can
significantly improve the zero-shot performance of MLLMs
and multi-grid MLLMs on 20 downstream datasets across
different categories of capabilities, images, and resolutions.
Both the manager and the multi-grid algorithm can be seen
as a plugin that improves the visual representation from two
orthogonal perspectives (depth and width). Their synergy
can capture and supplement more diverse visual details, to
mitigate the semantic ambiguity caused by the multi-grid
algorithm and further improve performance.
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APPENDIX A
DISCUSSIONS, LIMITATIONS AND FUTURE WORK

In this paper, we propose Manager, a lightweight, efficient
and effective plugin that helps better utilize multi-layer pre-
trained unimodal representations for vision–language represen-
tation learning. We demonstrate its effectiveness in both Two-
Tower VLM and MLLM architectures on 4 and 20 downstream
datasets, respectively.

A. The Spirit of Manager

In Section III under the Two-Tower VLM architecture, we
introduce three types of managers, i.e., SAM, SAUM, and
AAUM. We also provide an adaptation of SAUM to the latest
MLLM architecture in Section V-B2 All managers are de-
signed to aggregate insights from different levels of pre-trained
unimodal experts, i.e., incorporate different levels of unimodal
semantic knowledge contained in the multi-layer unimodal
representations from the pre-trained unimodal encoders. The
detailed implementation of these managers obey the following
design principles:

• Lightweight and Flexible: The manager should be a
lightweight and flexible plugin that can be easily inte-
grated into any VLM architecture and work with any
pre-trained unimodal encoders.

• Effective and Efficient: The manager should be effective
in aggregating multi-layer unimodal representations and
efficient in terms of computational budget.

• Aggregation and Multiple Injection: The manager
should aggregate multi-layer unimodal representations
and inject them into the different layers of the cross-
modal encoder in a flexible and adaptive way to facilitate
more comprehensive VL alignment and fusion.

• Spatial Consistency: The manager should maintain spa-
tial consistency (or locality) when aggregate multi-layer
unimodal representations, which is crucial for vision–
language alignment and fusion [99].

It would be interesting to explore more types of managers,
more efficient and effective designs of managers, and more
flexible and adaptive ways to select which layers of unimodal
representations to aggregate and how to inject them into
different layers of the cross-modal encoder or the LLM in
the future. inject managers into VLMs in the future:

• Manager Design: Although AAUM achieves better per-
formance under the Two-Tower VLM architecture with
the help of the cross-modal fused query, it also slightly
increases the computational budget, as we detailed dis-
cussed in Appendix B-C. More analysis and optimization
are needed for AAUM and also for the other types of
managers as shown in Appendix B-D. Especially for
AAUM, in the MLLM architecture, it actually achieves
similar or even slightly lower performance compared
to SAUM in LLaVA-OV-Manager. Hence, we directly
use SAUM for better efficiency and effectiveness in
our experiments. In our preliminary experiments, we try
different ways to get a good visual query or cross-modal
fused query for AAUM in the MLLM architecture, but the
performance is still not as good as SAUM. We attribute

this to the fact that, the visual query used by AAUM
to generate the aggregation weights is quite different
between the Two-Tower VLM and MLLM architectures.
They are taken from bidirectional / unidirectional trans-
former encoder / decoder, respectively. The casual na-
ture of the representation from the LLM in the MLLM
architecture may not be suitable for the usage of visual
query in AAUM. It contradicts the bidirectional nature of
multi-layer visual representations from the visual encoder.
Use bidirectional and casual attention for the visual and
textual part of the LLM, respectively, may be a potential
solution to this problem [100]–[102].

• Visual Representation Selection: As shown in Fig. 6,
in Two-Tower VLM architecture, the performance of
ManagerTower first increases gradually with the number
of unimodal representations, but then stops increasing and
even decreases when the number of unimodal represen-
tations exceeds 6. Similar trend is also observed in the
MLLM architecture in Fig. 9 How to obtain better perfor-
mance with acceptable computational budget by utilizing
more/better insights of unimodal experts, especially when
scaling the model or the MLLM architecture with deeper
and wider modules, e.g., 24-layer CLIP-ViT L-224/16 and
24-layer LLM Qwen2-0.5B-Instruct, is a question worth
further exploration. For example, designing reasonable
sparse activation functions for managers, instead of man-
ually selection, simple top-N or top-p sampling (which
did not work well in our preliminary experiments).

• Manager Injection: In the Two-Tower VLM architec-
ture, we inject managers into each cross-modal layer. In
the MLLM architecture, we uniformly inject managers
into the LLM from the first layer at a fixed layer inter-
val. How to inject managers into the LLM in a more
flexible and adaptive way is also a question worth further
exploration. For example, non-uniform injection and do
not start from the first layer.

In addition, it would also be interesting to explore the effec-
tiveness of managers in other VLM architectures [103], [104],
multimodal in-context learning [105], [106] and multimodal
chain-of-thought reasoning [107], [108], and the collaboration
with multi-grained multimodal data [109], [110].

There are also some recent works that follow or share
the spirit of our manager to aggregate multi-layer unimodal
representations in VLMs and MLLMs [6], [7], [85]–[87].
Besides, some works [96], [111], [112] explore the utiliza-
tion of different visual encoders (with different resolutions),
e.g.,, DINOv2 [113] and SigLIP [39], to improve the visual
representation. They aggregate multiple visual representations
from different visual encoders (experts), which is similar to
our manager that aggregates multi-layer visual representations
from different layers of the visual encoder (we treat each layer
of the visual encoder as an expert).

B. Semantic Ambiguity in the Multi-Grid Algorithm

In Section V-E, we provide a detailed analysis and case
study of the semantic ambiguity caused by the multi-grid
algorithm in the MLLM architecture. In fact, the multi-grid
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Fig. 21. A visualization of aggregation weights of textual and visual SAMs in each cross-modal layer. The X-axis is the index of the unimodal expert, and
the legend shows the index of the cross-modal layer.
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Fig. 22. A visualization of aggregation weights of textual and visual SAUMs in each cross-modal layer. The X-axis is the index of the unimodal expert,
and the legend shows the index of the cross-modal layer.
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Fig. 23. A visualization of aggregation weights of textual and visual AAUMs in each cross-modal layer. The X-axis is the index of the unimodal expert,
and the legend shows the index of the cross-modal layer.

algorithm is a resource-efficient way to directly split the image
into multiple image grids, which can effectively improve the
performance of MLLMs in high-resolution scenarios. It is
widely used in both academic research [12], [36], [96], [97]
and industrial applications [114]–[116]. It also called dynamic
image tiling or image cropping in some works.

However, the multi-grid algorithm may bring semantic
ambiguity since the grid line may cut off objects and connected
regions in the image [59], [98], [117]. Current works try to
mitigate the semantic ambiguity by introducing new modules
to enhance the interaction between different image grids [12],
[117], or by simultaneously adopting two different grid par-
titioning schemes [59]. They all bring additional training and
computational costs. Furthermore, our manager provides an
orthogonal perspective to alleviate the semantic ambiguity by
incorporating different levels of unimodal semantic knowledge
contained in the multi-layer unimodal representations from
the visual encoder, which can capture and supplement more
diverse visual details. The diversity of attention weights and
attention heads in the multi-grid MLLM will be increased by
our manager, which also demonstrates the guidance and col-
laboration between the manager and the multi-grid algorithm.

In fact, no matter the image patch in the ViTs or the feature
map from a convolutional kernel in the CNNs, they all suffer

from the semantic ambiguity caused by partitioning the image
into small regions. The self-attention mechanism in the ViTs
and the convolutional operation in the CNNs can help to
alleviate the semantic ambiguity by interacting with different
regions of the image. Directly training a high-resolution visual
encoder is a more straightforward and effective way to improve
the supported image resolution of the visual encoder, but need
precious and scarce high-resolution training data for continual
training of the visual encoder [92]–[95]. From the perspective
of improving the supported image resolution, the multi-grid
algorithm can be seen as an ensemble of the visual encoder
but with different image grids. The separate encodings of
different image grids bring more diverse visual details, but
also further intensify the semantic ambiguity. Appending the
representation of the resized base image before the image
grids alleviates the semantic ambiguity, but not enough based
on our experiments. The collaboration between our manager
(deeper representation) and the multi-grid algorithm (wider
representation) with different interaction modules for different
image grids is a promising direction to further improve the
performance of multi-grid MLLMs.
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Fig. 24. Brief illustrations of BridgeTower and our ManagerTower with
SAM, SAUM and AAUMs. Hollow arrows indicate the transmission of multi-
layer unimodal representations in ManagerTower instead of layer-by-layer
transmission in BridgeTower. Each unimodal or cross-modal layer is seen
as an unimodal or cross-modal expert. The arrow between the cross-modal
expert of the previous layer and the manager of the current layer is to get the
cross-modal fused query.

APPENDIX B
EXPLORATION ON TWO-TOWER VLM

A. Intuitive Comparison Between BT&MT
We intuitively compare BridgeTower (BT) and Manager-

Tower (MT) with different type of managers in Fig. 24.

1) BT vs. MT with SAUM: In Table II & V, we provide
the detailed performance comparison between BridgeTower
and ManagerTower.13 In fact, BridgeTower can be seen as an
approximate special case of ManagerTower with SAUMs if we
replace the learned weights W in each manager with layer-by-
layer one-hot distributions14 used in BridgeTower. However,
as shown in Fig. 22, the aggregation weight of textual and
visual SAUMs share a similar progressive trend across cross-
modal layers, which is completely different from the one-
hot distributions in BridgeTower. This allows ManagerTower
with SAUMs to achieve significant performance gains (75.91
vs. 76.55) compared to BridgeTower. Besides, the similar
trend of aggregation weight distributions between different
managers is consistent with the observations in Fig. 4, that is,
the cosine similarity of aggregated unimodal representations
between managers is always similar to 1.

2) SAM vs. SAUM vs. AAUM: We provide the visualizations
of aggregation weights of SAM, SAUM and AAUM without
VLP in Fig. 21 & 22 & 23. Comparing the visualization of
three types of managers without VLP, we can find that: (i) the
learned aggregation weights of SAM and SAUM share a sim-
ilar progressive trend across cross-modal layers; (ii) for each
AAUM, its generated aggregation weights vary significantly
across 6 unimodal experts. Comparing different AAUMs,
the aggregation weight distributions generated by AAUMs is
also very different. (iii) when we compare Fig. 22 & 23,
their respective aggregation weight distributions are com-
pletely different. This further demonstrates that compared
with SAUMs, AAUMs can adaptively generates different
aggregation weights for different tokens in different samples.
Interestingly, the first column of two figures both comes from
SAUMs, but the distributions are still clearly different. We
presume that high-layer AAUMs may help low-layer SAUMs
rectify their management of experts.

B. Switch Visual and Textual Backbones

We experiment with different pre-trained visual and textual
backbones as unimodal encoders to further investigate the
impact on performance of the managers of ManagerTower
compared to the bridges of BridgeTower. As shown in Ta-
ble V, regardless of the visual and textual backbones we ap-
ply, ManagerTower significantly and consistently outperforms
BridgeTower on both datasets. This further proves the effec-
tiveness and generalization of our proposed ManagerTower
architecture and managers, which can provide adaptive and
effective aggregation of multi-layer unimodal representations
for VL representation learning.

C. Computational Budget

Table VI shows the computational budget and downstream
task performance without VLP for BridgeTower and Manager-
Tower, including the number of parameters, the number of

13The re-implemented BridgeTower obtained higher experimental results
than the original paper due to the better fine-tuning settings we used for all
experiments in Section IV-B.

14It means that, for each cross-modal layer, only one unimodal expert is
activated at a time in the bottom-up direction.
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TABLE V
PERFORMANCE OF BRIDGETOWER AND MANAGERTOWER WITH DIFFERENT VISUAL AND TEXTUAL BACKBONES. B, N AND M IN “VIT B-N/M”

DENOTE THE MODEL SIZE, IMAGE RESOLUTION AND PATCH SIZE, RESPECTIVELY.

Visual Textual VQAv2 Test-Dev Flickr30K RMEAN
Backbone Backbone BridgeTower ManagerTower BridgeTower ManagerTower

DeiT B-224/16 RoBERTa 71.22 72.20 (↑ 0.98) 87.63 88.72(↑ 1.09)
ViT B-224/16 RoBERTa 72.82 73.67 (↑ 0.85) 90.48 90.92(↑ 0.44)
ViT B-384/16 RoBERTa 72.94 73.80 (↑ 0.86) 90.51 90.96(↑ 0.45)

CLIP-ViT B-224/32 RoBERTa 73.73 74.79 (↑ 1.06) 91.33 91.76(↑ 0.43)
CLIP-ViT B-224/16 BERT 75.74 76.36 (↑ 0.62) 92.84 93.42(↑ 0.58)
CLIP-ViT B-224/16 RoBERTa 75.91 76.65 (↑ 0.74) 93.33 93.97(↑ 0.64)

TABLE VI
COMPUTATIONAL BUDGET AND DOWNSTREAM TASK PERFORMANCE WITHOUT VLP FOR BRIDGETOWER AND MANAGERTOWER. * DENOTES OUR

RE-IMPLEMENTATION.

Model Manager Manager # Params # FLOPs Inference Time VQAv2 Flickr30K
Type Visual Query (M) (G) (ms/sample) Test-Dev RMEAN

BridgeTowerBASE * - - 326.58 101.25 39.43 75.91 93.33
ManagerTowerBASE SAUM - 326.77 101.34 41.12 (×1.04) 76.55 (↑ 0.64) 93.73 (↑ 0.40)
ManagerTowerBASE AAUM CV

ℓ−1 326.77 101.35 41.80 (×1.06) 76.52 (↑ 0.61) 93.84 (↑ 0.51)
ManagerTowerBASE AAUM CV

ℓ−1,C
T
ℓ−1 338.64 105.52 43.20 (×1.10) 76.65 (↑ 0.74) 93.97 (↑ 0.64)

FLoating-Point operations (FLOPs),15 and the average infer-
ence time per instance.

We measure the average inference time of processing 1
VQA instance over 10K runs on 1 NVIDIA TITAN V GPU.
The sequence length is 50, and the image resolution is 384×
384. Compared with BridgeTower (1st row), ManagerTower
(4th row) uses an acceptable additional computational budget
(3.7% parameters, 4.2% FLOPs, and 3.8ms inference time)
and achieves significant absolute performance improvements
of 0.74% and 0.64% on VQAv2 and Flickr30K, respectively.
We further analyse other well-performed variants of Manager-
Tower in the 2nd and 3rd rows. It is worth noting that the two
variants share a similar computational budget as BridgeTower,
but achieve better performance. This not only demonstrates the
efficiency and effectiveness of our ManagerTower architecture,
but also reminds us that the cross-modal fused query via the
cross-attention mechanism is the main reason for the additional
computational budget of ManagerTower (4th row), as it is the
only difference between the 3rd and 4th row models. This
inspires us to explore a more efficient method to fuse CV

ℓ−1

and CT
ℓ−1 to get the cross-modal fused query in the future.

D. Cross-Attention and Concat-Attention Managers

1) Cross-Attention Managers: We implement the standard
cross-attention mechanism [17] and reduce the linear pro-
jection layer for value to save computational budget.16 Take
the visual manager for example, it takes CV

ℓ−1 ∈ RL×D

as the query, and the first token of multi-layer unimodal
representations, i.e., V[:, 0] ∈ RN×D, as the key. Hence, the
shape of generated aggregation weights is N × L, which can

15We use Facebook Research’s fvcore, to calculate FLOPs.
16The calculation of cross-modal fused query also uses this simplified

version of the cross-attention mechanism.

be broadcast to the aggregation weights WA∈RN×L×D. The
following calculation is the same as AAUMs in Fig. 5. The
results in Table I show a significant decrease compared to
other managers on Flickr30K. We attribute this to the fact that
the cross-attention manager will break the locality (or spatial
consistency) of unimodal representations [99], [112], which is
crucial for the downstream tasks like image–text retrieval. We
leave the detailed analysis of this phenomenon to the future
work.

2) Concat-Attention Managers: Take the visual manager
as an example, it broadcasts CV

ℓ−1 ∈RL×D to RN×L×D, and
concatenates it with V ∈ RN×L×D along the last dimension
as the concatenated query. It then directly projects the query
to WA ∈RN×L×D. The following calculation is the same as
AAUMs in Fig. 5. In fact, this type of manager is different
from all other managers from the perspectives of the generated
aggregation weights. Although its aggregation weights delve
into the feature dimension of CV

ℓ−1 and V, the substantially
increased number of parameters and computational cost
do not result in a significant performance gain, making it
impractical and inefficient. More efficient variants of this type
of manager should be investigated in the future.

E. Detailed Comparison with Previous Arts

Due to the space limitations, we omit some baselines and
details in Table III. Here we provide more details on the
comparison with previous arts in Table VII.

F. Implementation Details

1) Vision–Language Pre-training: Following METER [6],
we use two common VLP objectives for Two-Tower VLMs.

https://github.com/facebookresearch/fvcore
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TABLE VII
COMPARISONS WITH PREVIOUS MODELS ON 4 DOWNSTREAM DATASETS. THE BEST SCORE IS BOLDED. B, N AND M IN “VIT B-N/M” DENOTE THE

MODEL SIZE, IMAGE RESOLUTION AND PATCH SIZE, RESPECTIVELY. ∗ INDICATES THAT THE MODEL ALSO USES VG-QA DATA TO FINE-TUNE ON
VQAV2. ⋆ DENOTES THE MODEL IS TRAINED FROM SCRATCH. “# PRE-TRAIN IMAGES” DENOTES THE NUMBER OF UNIQUE IMAGES USED IN VLP.

Model # Pre-train Visual VQAv2 SNLI-VE NLVR2 Flickr30K
Images Backbone Test-Dev Test-Std Dev Test Dev Test-P IR@1 TR@1

Base-size models pre-trained on 4M public data
ViLTBASE [24] 4M ViT B-384/32 71.26 - - - 75.70 76.13 64.4 83.5
UNITERBASE [25] ∗ 4M Faster R-CNN 72.70 72.91 78.59 78.28 77.18 77.85 72.52 85.90
VILLABASE [118] ∗ 4M Faster R-CNN 73.59 73.67 79.47 79.03 78.39 79.30 74.74 86.60
UNIMOBASE [26] 4M Faster R-CNN 73.79 74.02 80.00 79.10 - - 74.66 89.70
ALBEFBASE [27] ∗ 4M DeiT B-224/16 74.54 74.70 80.14 80.30 80.24 80.50 82.80 94.30
VinVLBASE [119] 5.7M ResNeXt-152 75.95 76.12 - - 82.05 83.08 - -
METER-SwinBASE [6] 4M Swin B-384/32 76.43 76.42 80.61 80.45 82.23 82.47 79.02 92.40
VLMOBASE [28] 4M BEiT B-224/16 76.64 76.89 - - 82.77 83.34 79.30 92.30
METER-CLIPBASE [6] 4M CLIP-ViT B-224/16 77.68 77.64 80.86 81.19 82.33 83.05 82.22 94.30
BridgeTowerBASE [7] 4M CLIP-ViT B-224/16 78.66 78.73 81.11 81.19 81.85 83.09 85.83 94.73
ManagerTowerBASE (Ours) 4M CLIP-ViT B-224/16 79.39 79.15 81.26 81.44 82.81 83.34 86.56 95.64
Models pre-trained on more data and/or with larger size

UNITERLARGE [25] ∗ 4M Faster R-CNN 73.82 74.02 79.39 79.38 79.12 79.98 75.56 87.30
VILLALARGE [118] ∗ 4M Faster R-CNN 74.69 74.87 80.18 80.02 79.76 81.47 76.26 87.90
UNIMOLARGE [26] 4M Faster R-CNN 75.06 75.27 81.11 80.63 - - 78.04 89.40
ALBEFBASE [27] ∗ 14M DeiT B-224/16 75.84 76.04 80.80 80.91 82.55 83.14 85.60 95.90
VinVLLARGE [119] 5.7M ResNeXt-152 76.52 76.63 - - 82.67 83.98 - -
BLIPBASE [30] ∗ 14M DeiT B-224/16 77.54 77.62 - - 82.67 82.30 87.20 96.60
SimVLMBASE [29] ⋆ 1.8B ResNet-101 77.87 78.14 84.20 84.15 81.72 81.77 - -
BLIPBASE [30] ∗ 129M DeiT B-224/16 78.24 78.17 - - 82.48 83.08 87.30 97.30
SimVLMLARGE [29] ⋆ 1.8B ResNet-152 79.32 79.56 85.68 85.62 84.13 84.84 - -
VLMOLARGE [28] 4M BEiT L-224/16 79.94 79.98 - - 85.64 86.86 84.50 95.30
SimVLMHUGE [29] ⋆ 1.8B Larger ResNet-152 80.03 80.34 86.21 86.32 84.53 85.15 - -

a) Masked Language Modeling (MLM): For MLM, we
follow the conditional masking approach used in UNITER [25]
that randomly masks 15% of the tokens in the text token
sequence while keeping the image patch sequence unchanged.
The model is then trained to predict the original masked tokens
given the incomplete text sequence and the complete image
patch sequence. The masking strategy and MLM task head we
use are the same as RoBERTa. The top-layer representation of
the textual part of the cross-modal encoder is used as input
for the MLM task head.

b) Image–Text Matching (ITM): For ITM, both matched
and mismatched image–text pairs are fed into the model with
equal probability. The model is trained to predict whether a
given image–text pair is a matched (positive) or a mismatched
(negative) pair. The top-layer representations of [class] and
[<s>] tokens are activated by the non-linear function Tanh.
Then the concatenation of the above representations is fed into
a linear classifier with cross-entropy loss for classification.

2) Pre-training Settings: Table VIII shows the statistics
of the pre-train datasets. Following previous work [6], [24],
[25], [27], we adopt four public image–caption datasets for
pre-training, including Conceptual Captions (CC) [31], SBU
Captions (SBU) [32], MSCOCO Captions (COCO) [33], and
Visual Genome (VG) [34]. The total numbers of the unique
images and image–caption pairs in the combined training data
are 4M and 9M. Table IX describes the hyperparameters for
pre-training the ManagerTower. The learning rate of the cross-
modal encoder is five times higher than the base learning

TABLE VIII
STATISTICS OF THE PRE-TRAIN DATASETS. WE REMOVE DUPLICATE

IMAGE–CAPTION PAIRS IN VG [6], [24] AND ONLY 2.9M
IMAGE–CAPTION PAIRS CAN BE DOWNLOADED IN CC.

COCO VG CC SBU
# Images 113K 108K 2.9M 860K
# Captions 567K 4.8M 2.9M 860K

rate [6], e.g., used by unimodal encoders.
3) Fine-Tuning Settings:

a) Dataset Setting: Standard settings and splits are used
for all datasets. Noted that, for Flickr30K [5], we follow the
standard Karpathy Split [120]; for VQAv2 [2], we follow the
common practice [2], [121]: convert VQAv2 to a classification
task with 3, 129 answer classes; train the model with training
data and validation data, and evaluate the model on the Test-
Dev and Test-Std data.

b) Image Augmentation: We follow previous works [27],
[30] to use the combination of RandomResizedCrop, Ran-
domHorizontalFlip, and RandAugment [122] during training.

4) Fine-Tuning Strategies: For visual question answering
(VQAv2 [2]), visual entailment (SNLI-VE [3]) and visual
reasoning (NLVR2 [4]), the fine-tuning strategy is similar to
the strategy we used in the ITM objective. We pass the final
representation of [class] token and [<s>] token to the
non-linear layer activated by Tanh, and feed the concatenation
of the output into a classifier.

For image–text retrieval (Flickr30K [5]), we follow the
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Fig. 25. A brief illustrations of the multi-grid algorithm used in LLaVA-OV. The bilinear interpolation operation is omitted for simplicity, which is used
to reduce # input visual tokens. “\n” denotes the special token to indicate the end of a row and the shape of the input image. Illustration inspired by
DeepSeek-VL2 [116].

approach used in ALBEF [27] to optimize our model with
both image–text contrastive (ITC) and ITM objectives. In the
training phase, we first add two linear projections on top of the
unimodal encoders and calculate the contrastive similarity of
unimodal representations of image–text pairs by dot product
to compute the ITC loss. Formerly, negative image–text pairs
in ITM loss are sampled randomly. However, after computing
the ITC loss, we can use contrastive similarity distribution to
sample one hard in-batch negative text (image) for each image
(text) in a mini-batch. In the inference phase, we first compute
the contrastive similarity for all images and texts, and then
select the top-k candidates based on their contrastive similarity.
We then calculate their ITM scores for these candidates to
determine the final ranking.

Table XIV describes the hyperparameters for fine-tuning on
4 downstream datasets. Following previous work [6], [24], we
apply cross-entropy loss for SNLI-VE, NLVR2 and Flickr30K
and binary cross-entropy loss for VQAv2.

APPENDIX C
EXPLORATION ON MLLM

A. A Brief Illustration of the Multi-Grid Algorithm

The multi-grid algorithm [12], [36], [96], [97] is a widely
used technique in MLLMs to help the visual encoder, e.g.,
SigLIP, efficiently process images with varying image res-
olutions and aspect ratios. We show a brief illustration of
the multi-grid algorithm used in LLaVA-OV in Fig. 25, and
recommend readers to refer to the original paper [11] for more
details.

B. Average Attention Distance of SigLIP

As stated in Section V-D1, similar to the observations in
both BridgeTower and ManagerTower, visual representations
from the top half of the visual encoder bring the best perfor-
mance, and using visual representations from all layers leads
to the lowest performance improvement.

We visualize the average attention distance of SigLIP
in Fig. 26. It is computed by averaging the 2D euclidean
distance between the query patch (token) and all other patches
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Fig. 26. Size of attended area by head and layer depth. Each small/large dot
shows the mean attention distance of each head or all heads in each layer of
the visual encoder. Image width is 384 pixels and patch size is 14×14 pixels.

(tokens), weighted by the attention weight of visual self-
attention. Similar to the observations in ViT [58], in LLaVA-
OV, the average attention distance vary significantly across
heads in the bottom half of SigLIP, with some heads focusing
on the most of the image while others focusing on the
query location or a small region nearby. As depth increases,
especially in the top half of the visual encoder, the average
attention distance of all heads increases, where most heads
attend widely across tokens and capture global visual features.
Above observations provide a possible explanation for the
performance difference between using visual representations
from the top half and all layers of SigLIP in LLaVA-OV.

C. Detailed Analysis on ScienceQA and OK-VQA

As a supplement for Section V-E, we further provide a
detailed analysis ScienceQA and OK-VQA, to intuitively
analyse the effectiveness of managers.

1) ScienceQA: This is a knowledge-intensive dataset with
low-resolution hybrid images. As shown in Fig. 27, both
the manager and the multi-grid algorithm can bring perfor-
mance improvements on different dimensions. For “Language
Science”, the manager brings significant improvements to
Baseline, and such improvement seems to overlap with that
provided by the multi-grid algorithm. For “Natural Science,
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Fig. 27. Zero-shot performance of four baselines on ScienceQA-IMG test set.
The overall average score and the average score of each dimension are shown.

Question: This Venn diagram shows information about two ancient poems.

Based on the diagram, what do the Odyssey and the Aeneid have in common?

Options: A. They are both set after the Trojan War.

  B. They were both written by Virgil.

Category: Language Science

Prediction:

Baseline    B

+ Manager    A

+ Grid     A

+ Grid + Manager   A

Question: Which continent is highlighted?

Options: A. Europe B. North America C. South America D. Asia

Category: Social Science

Prediction:

Baseline    C

+ Manager    B

+ Grid     D

+ Grid + Manager   B

1

2

Fig. 28. Case studies of four baselines on ScienceQA-IMG test set. Red and
green fonts represent incorrect and correct predictions, respectively. Yellow
lines indicate the boundaries of the image grids.

Social Science”, the manager brings stable improvements.
Especially in “Social Science”, we can notice that the multi-
grid algorithm brings slight improvements to Baseline, while
our manager can bring significant improvements to both
Baseline and Baseline+Grid. Furthermore, their synergy can
further improve performance. Take the case 1 in Fig. 28
as an example, in “Language Science”, most samples require
analysis based on text information in the image or the question.
Baseline misses visual details in the image, and both the man-
ager and the multi-grid algorithm can help Baseline capture
visual details “set after the Trojan War”. As for the case 2 ,
the improvement of Manager mainly comes from map related
problems. The multi-grid algorithm divides the map into
multiple grids, which may make it more difficult to understand,
e.g., the highlighted North America is divided into two grids,
and then bring semantic ambiguity. By introducing different
levels of semantic knowledge, our manager can not only help
Baseline to capture the highlighted part, but also mitigate
semantic ambiguity caused by the multi-grid algorithm.

2) OK-VQA: This is a general dataset with low-resolution
natural images. As shown in Fig. 29, surprisingly, the multi-
grid algorithm does not improve the performance much and
even leads to significant degradation on many dimensions:

• Objects, Material, and Clothing; People and Everyday
Life; Plants and Animals; Sports and Recreation: images
about common objects, things, and scenes in daily life or
in nature.

• Cooking and Food: close-ups of food or dining table.
• Geography, History, Language and Culture: complex

buildings (groups), event scenes containing different
types of objects, etc.
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Fig. 29. Zero-shot performance of four baselines on OK-VQA validation
set.

Question: What are these horses doing?

Category: Plants and Animals   

Prediction:

Question: Is this in a home kitchen or commercial kitchen?

Category: Cooking and Food 

Prediction:

Baseline   eating

+ Manager   eating

+ Grid    standing

+ Grid + Manager  eating

Baseline  commercial

+ Manager  commercial

+ Grid   home

+ Grid + Manager commercial

1

2

Fig. 30. Case studies of four baselines on OK-VQA validation set. Red and
green fonts represent incorrect and correct predictions, respectively. White
lines indicate the boundaries of the image grids.

Take cases in Fig. 30 as an example, the multi-grid algorithm
may actually increase the understanding difficulty and bring
semantic ambiguity. Especially for (complex) scenes with
many (different types of) objects and things, it cuts off objects
and connected regions, which may hinder the perception of ob-
jects, things and scenes. By aggregating insights from different
levels of visual experts, our manager can not only improve
Baseline, but also partially compensate for the performance
loss caused by the multi-grid algorithm, and may even further
improve the performance on some dimensions.

D. Attention Weight Distribution Analysis without Multi-Grid

As a supplement for Section V-F2 we further provide
the average entropy and KL divergence of attention weight
distributions in each layer of Baseline and Baseline+Manager.
Similar trend can be observed in Fig. 31 and 32, benefiting
from difference levels of semantic knowledge introduced by
our manager, Baseline+Manager shows higher diversity of
attention weight and attention heads in each layer. This helps
the model capture richer and more diverse features, and further
improve the performance on downstream tasks.

E. Implementation Details

In this paper, we take LLaVA-OneVision-0.5B-SI [11] as
our baseline (LLaVA-OV for short), which is a widely used
open-source multi-grid MLLM. We follow the same training
settings as the original LLaVA-OV and use about 8M data
samples for multi-stage training. Different Two-Tower VLMs
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Fig. 31. Average entropy of attention weight distributions in each layer of
Baseline and Baseline+Manager. The dotted vertical lines indicate the layers
where managers are injected.
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Fig. 32. Average KL divergence between attention weight distributions of
attention heads in each layer of Baseline and Baseline+Manager. The dotted
vertical lines indicate the layers where managers are injected.

that trained with various pre-training objectives and fine-
tuning strategies for different downstream tasks, most of latest
MLLMs are trained with the autoregressive objective, which
teaches the model to generate the answer tokens one by one.
LLaVA-OV adopts a curriculum learning strategy that trains
the model with 3 different stages:

• Stage-1: Language-Image Alignment. A small amount
of data is used to initially align the visual represen-
tation from the visual encoder to the word embedding
space of the LLM. 558K image–caption pairs from LCS-
558K [57] are used in this stage, and the captions come
from the Internet.

• Stage-1.5: High-Quality Knowledge Learning. About
4M data are used in this stage to learn help the model
further align the visual encoder and the LLM, and also
learn high-quality knowledge. The data consists of re-
captioned detailed description data and document/ocr
data, and most of the data is synthetic.

• Stage-2: Visual Instruction Tuning. About 3.2M data are
used in this stage to teach the model to solve diverse
downstream tasks under the zero-shot setting. The data
consists of a wide range of multimodal datasets.

We recommend readers to refer to the original paper [11]
for more details about the training settings and data. The
only two differences between our Baseline+Manager and the
original LLaVA-OV are: (i) Data: partial training data are not
open sourced; (ii) Maximum length: we use 16, 384 instead
of 32, 768 as the maximum length of each input sample for
better efficiency (more than 99% of the samples have a length
less than 16, 384). The above two differences bring slight
performance differences between Baseline+Manager and the
original LLaVA-OV, and we remove few some downstream
datasets for better efficiency and robustness.

TABLE IX
HYPERPARAMETERS FOR PRE-TRAINING. THE FIRST BLOCK IS THE

HYPERPARAMETERS FOR THE CROSS-MODAL ENCODER.

Hyperparameters ManagerTower
Number of Layers 6
Hidden size 768
FFN inner hidden size 3, 072
Number of Attention heads 12
Dropout Ratio 0.1
Attention dropout 0.1

Total Steps 100k
Batch Size 4, 096
Optimizer AdamW
Learning Rate 1e−5

Learning Rate Decay Linear
Weight Decay 0.01
Warmup Steps 10k
Adam ϵ 1e−8

Adam β1 0.9
Adam β2 0.98

Center-Crop ✓

Random Resized Crop ✗

Random Augmentation ✗

Random Horizontal Flipping ✗

Textual Encoder RoBERTaBASE
Visual Encoder CLIP-ViT B-224/16
Patch Size 16
Image Resolution for VLP 288

F. Evaluation Details

As stated in Section V-B3, we follow the same evaluation
settings as the original LLaVA-OV [11] for the zero-shot
evaluation on 20 downstream datasets. We further divide these
datasets into different groups from three perspectives, i.e.,
category of capabilities [112], [123], images, and resolutions,
to better analyze the effectiveness of managers in MLLMs and
multi-grid MLLMs. Details about the evaluation datasets we
used are shown in Table X.

G. Detailed Results

We provide results of each category for our four baselines
in Table XI, across different categories of capabilities, images,
and resolutions Furthermore, we also provide detailed results
of our four baselines on each dataset in Table XII, and XIII.
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TABLE X
DETAILS OF 20 DOWNSTREAM DATASETS USED IN OUR EXPLORATION ON MLLMS. FOR IMAGE RESOLUTION AND ASPECT RATIO, WE PROVIDE THE

MINIMUM, MAXIMUM, AND AVERAGE VALUES IN THE FORM OF x/y/z. THE THRESHOLD FOR LOW AND HIGH RESOLUTION IS 384× 2 = 768 PIXELS.
FOR MM-LIVEBENCH, WE USE TWO DIFFERENT SUBSETS OF IT (2407 AND 2409). ⋆ INDICATES THE DATASETS ARE ONE OF THE 9 DATASETS WE USED

IN THE ABLATION STUDY FOR EFFICIENCY AND ROBUSTNESS.

Capability Dataset Description Answer Category Image Resolution Resolution Aspect Ratio # Samples
Category Category Category

General

VQAv2 [2] ⋆ Scene understanding VQA Open form (Short) Natural Low 120 / 640 / 523 0.17 / 1.00 / 0.72 214.00K
OKVQA [43] External knowledge VQA Open form (Short) Natural Low 208 / 640 / 524 0.26 / 1.00 / 0.72 5.05K
GQA [44] ⋆ Compositional VQA Open form (Short) Natural Low 314 / 640 / 523 0.36 / 1.00 / 0.71 12.58K
MMVet [45] Multi-discipline Open form (Long) Hybrid High 181 / 4180 / 909 0.27 / 1.00 / 0.74 0.22K
SEED-Bench [46] ⋆ Multi-discipline; Large-scale Multi-choice Natural High 240 / 9906 / 791 0.50 / 1.00 / 0.66 18.00K
RealWorldQA [47] ⋆ Real-world VQA Multi-choice; Open form (Short) Natural High 512 / 1469 / 1147 0.45 / 1.00 / 0.67 0.77K

Text-Rich

TextVQA [48] ⋆ Scene Text Recognition Open form (Short) Natural High 512 / 3991 / 872 0.25 / 1.00 / 0.73 5.00K
ChartQA [49] Chart Understanding Open form (Short) Abstract Low 245 / 1199 / 665 0.39 / 0.99 / 0.71 2.50K
DocVQA [37] ⋆ Document Understanding Extractive Abstract High 418 / 6209 / 1918 0.33 / 0.99 / 0.75 5.19K
InfoVQA [50] Infographic Understanding Extractive; Numerical Abstract High 452 / 7655 / 1724 0.09 / 1.00 / 0.46 3.29K
OCRBench [38] Text Recognition Open form (Short) Hybrid Low 20 / 5900 / 627 0.08 / 1.00 / 0.57 1.00K

Knowledge

AI2D [51] ⋆ Science Diagrams Multi-choice Abstract Low 152 / 1500 / 547 0.18 / 1.00 / 0.72 3.09K
ScienceQA [52] ⋆ High-school Science Multi-choice Hybrid Low 114 / 685 / 378 0.10 / 1.00 / 0.66 2.02K
MMMU [53] ⋆ College-level Multi-discipline Multi-choice; Open form (Short) Hybrid Low 185 / 2217 / 580 0.11 / 1.00 / 0.60 0.90K
MathVista [54] General Math Understanding Multi-choice; Open form (Short) Hybrid Low 58 / 4275 / 499 0.10 / 1.00 / 0.72 1.00K

Real-World

ImageDC [55] Image Detail Description Open form (Long) Hybrid Low 470 / 512 / 499 0.60 / 1.00 / 0.76 0.10K
MM-LiveBench [56] Internet Content Understanding Open form (Long) Hybrid High 980 / 2051 / 1788 0.51 / 0.92 / 0.61 0.25K
LLaVA-Wild [57] Real-world Chat Open form (Long) Hybrid High 465 / 3921 / 1277 0.51 / 1.00 / 0.80 0.06K
LLaVA-Wilder [35] Real-world Chat Open form (Long) Hybrid High 224 / 3492 / 870 0.37 / 1.00 / 0.72 0.21K

TABLE XI
ZERO-SHOT PERFORMANCE OF FOUR BASELINES ON 20 DATASETS. THE OVERALL AVERAGE SCORE AND THE AVERAGE SCORE OF EACH CAPABILITY

CATEGORY ARE SHOWN.

Model Overall Capability Category Image Category Resolution Category
General Text-Rich Knowledge Real-World Natural Abstract Hybrid Low High

Baseline 50.54 48.72 47.52 46.05 57.26 56.49 46.50 48.60 54.34 46.74
+ Manager 51.50 49.59 48.53 47.63 57.74 57.44 47.48 49.53 55.31 47.68
+ Grid 53.87 49.07 57.26 47.50 58.96 57.92 55.06 50.98 56.25 51.50
+ Grid + Manager 55.21 50.35 59.22 48.65 59.69 59.22 56.63 52.24 57.48 52.95

TABLE XII
ZERO-SHOT PERFORMANCE OF FOUR BASELINES ON 11 DATASETS OF “GENERAL” AND “TEXT-RICH” CAPABILITY CATEGORIES. THE SCORE OF EACH

DATASET AND THE AVERAGE SCORE OF EACH CAPABILITY CATEGORY ARE SHOWN. THE SCORE OF OCRBENCH WILL BE NORMALIZED BY DIVIDING BY
10 FOR THE AVERAGE CALCULATION.

Model
General Text-Rich

VQAv2 OKVQA GQA MMVet SEED-Bench RealWorldQA Average TextVQA ChartQA DocVQA InfoVQA OCRBench Average
val val testdev test image test val test test test test

Baseline 73.90 37.18 57.66 21.40 61.50 50.98 48.71 57.56 54.32 51.40 27.30 470.00 47.52
+ Manager 74.18 37.28 57.89 22.40 65.33 51.11 49.61 59.00 56.24 52.49 27.31 476.00 48.53
+ Grid 74.65 36.13 57.95 24.00 61.08 52.55 49.07 65.14 59.32 68.55 38.61 547.00 57.26
+ Grid + Manager 74.90 37.99 58.66 25.60 65.14 52.81 50.35 65.82 60.96 70.90 40.70 577.00 59.22

TABLE XIII
ZERO-SHOT PERFORMANCE OF FOUR BASELINES ON 9 DATASETS OF “KNOWLEDGE” AND “REAL-WORLD” CAPABILITY CATEGORIES. THE SCORE OF

EACH DATASET AND THE AVERAGE SCORE OF EACH CAPABILITY CATEGORY ARE SHOWN.

Model
Knowledge Real-World

AI2D ScienceQA MMMU MathVista Average ImageDC MM-LiveBench LLaVA-Wild LLaVA-Wilder Average
test test val testmini test July Sep test test

Baseline 52.95 65.25 31.78 34.20 46.05 89.18 38.76 41.50 68.40 50.00 57.57
+ Manager 53.89 69.21 33.11 34.30 47.63 89.44 39.74 43.27 69.00 50.70 58.43
+ Grid 53.76 69.36 30.78 36.10 47.50 89.73 41.28 43.80 68.80 51.20 58.96
+ Grid + Manager 53.95 72.43 31.22 37.00 48.65 89.95 41.89 45.13 69.30 52.20 59.69
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TABLE XIV
HYPERPARAMETERS FOR FINE-TUNING MANAGERTOWER ON 4 DOWNSTREAM DATASETS. FT DENOTES FINE-TUNING. CE AND BCE ARE SHORT FOR

CROSS-ENTROPY LOSS AND BINARY CROSS-ENTROPY LOSS, RESPECTIVELY.

Hyperparameters VQAv2 SNLI-VE NLVR2 Flickr30K
Total Epochs 10 4 5 20
Batch Size 576 64 256 512
Optimizer AdamW AdamW AdamW AdamW
Learning Rate 9e−6 3e−6 1.4e−5 6e−6

Learning Rate Decay Linear Linear Linear Linear
Weight Decay 0.06 0.01 0.01 0.01
Warmup Ratio 0.06 0.06 0.1 0.1
Adam ϵ 1e−8 1e−8 1e−8 1e−8

Adam β1 0.9 0.9 0.9 0.9
Adam β2 0.98 0.98 0.98 0.98

Center-Crop ✗ ✗ ✗ ✗

Random Resized Crop ✓ ✓ ✓ ✓

Random Augmentation ✓ ✓ ✓ ✓

Random Horizontal Flipping ✗ ✓ ✓ ✓

Textual Encoder RoBERTaBASE RoBERTaBASE RoBERTaBASE RoBERTaBASE
Visual Encoder CLIP-ViT B-224/16 CLIP-ViT B-224/16 CLIP-ViT B-224/16 CLIP-ViT B-224/16
Patch Size 16 16 16 16
Image Resolution for FT 576 384 384 384
Loss Function BCE CE CE CE
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