

ManagerTower: Aggregating the Insights of Uni-Modal Experts for Vision-Language Representation Learning

Xiao Xu^{1,3}, Bei Li^{2,3}, Chenfei Wu³, Shao-Yen Tseng⁴, Anahita Bhiwandiwalla⁴, Shachar Rosenman⁴, Vasudev Lal⁴, Wanxiang Che¹, Nan Duan³

¹Harbin Institute of Technology, ²Northeastern University, ³Microsoft Research Asia, ⁴Intel Labs

ACL 2023 Oral || Presenter: Xiao Xu || July, 2023

Work done during the internship of Microsoft Research Asia NLC Group.

Outline

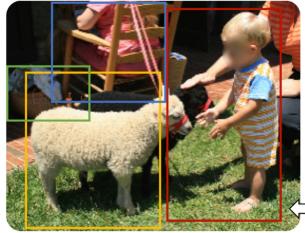
- Background
- Motivation
- Architecture & Manager Design
- Visualization

Background: Vision-Language Learning

What is Vision-Language (VL) Learning?

Goal: Train a smart AI system that can understand both image and text.

Approach: Large-scale self-supervised pre-training on image-text pairs.

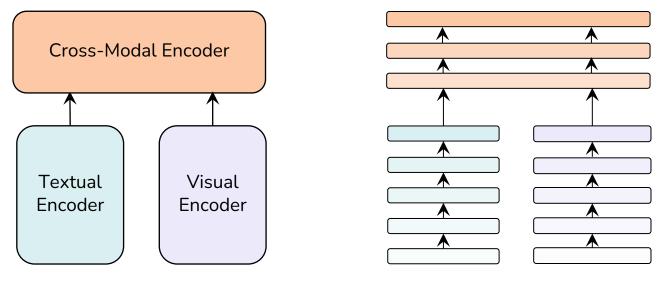


Visual Question Answering What color is the child's outfit? Orange Referring Expressions child sheep basket people sitting on chair Multi-modal Verification The child is petting a dog. false

Caption-based Image Retrieval

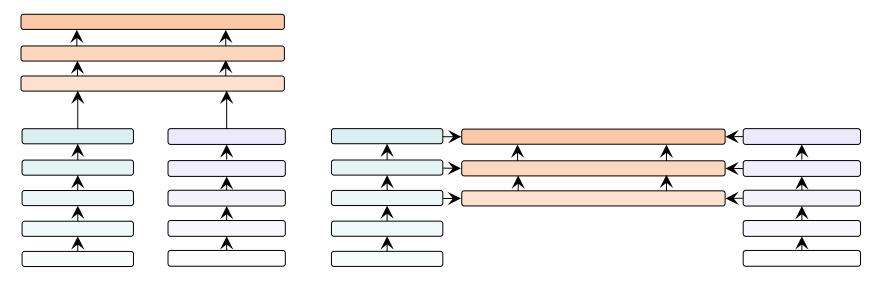
A child in orange clothes plays with sheep.

Two-Tower Architecture



Two-Tower

Two-Tower vs. BridgeTower



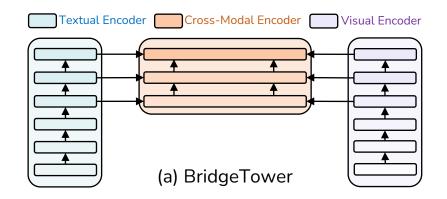
Two-Tower

BridgeTower

Motivation: Adaptively Exploit Uni-Modal Insights

Limitations of BridgeTower

- Ineffective layer-by-layer utilization
- The number of cross-modal layers is tied to the number of uni-modal layer representations it used



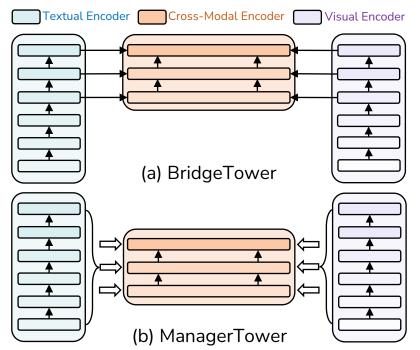
BridgeTower vs. ManagerTower

Limitations of BridgeTower

- Ineffective layer-by-layer utilization
- The number of cross-modal layers is tied to the number of uni-modal layer representations it used

Advances of ManagerTower

- Takes multi-layer uni-modal representations as the insights of pre-trained uni-modal experts at different levels
- Adaptively aggregates insights via managers in each cross-modal layer



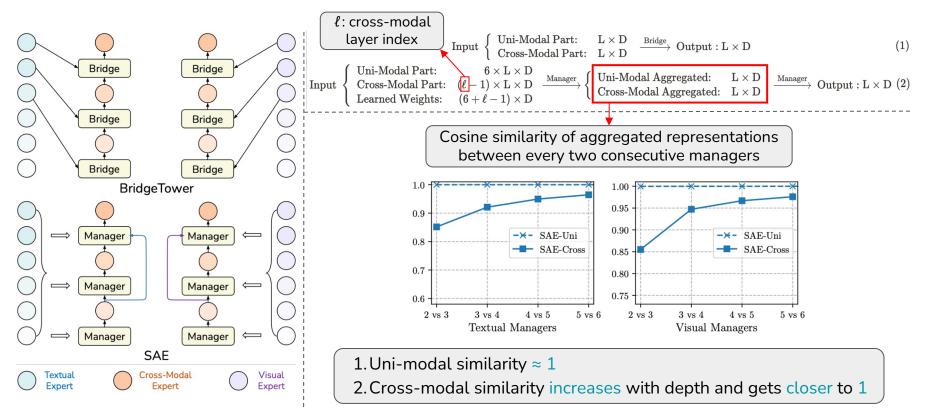
Architecture & Manager Design

ManagerTower Architecture

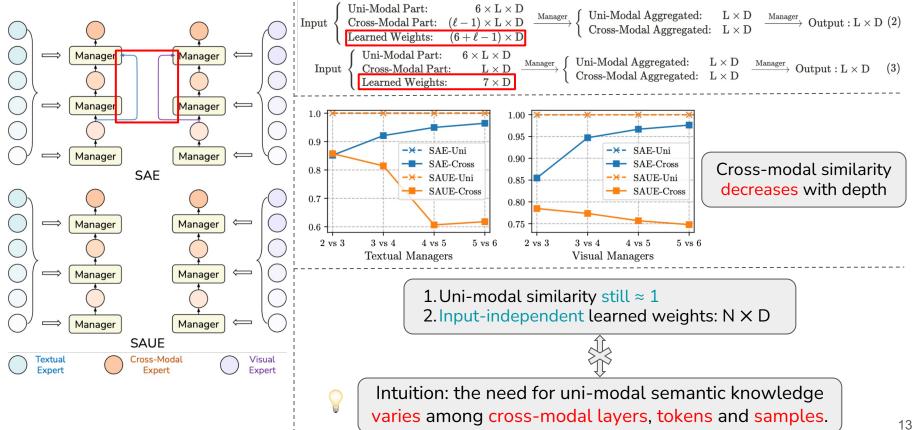


ManagerTower can work with any visual, textual, or cross-modal encoder.

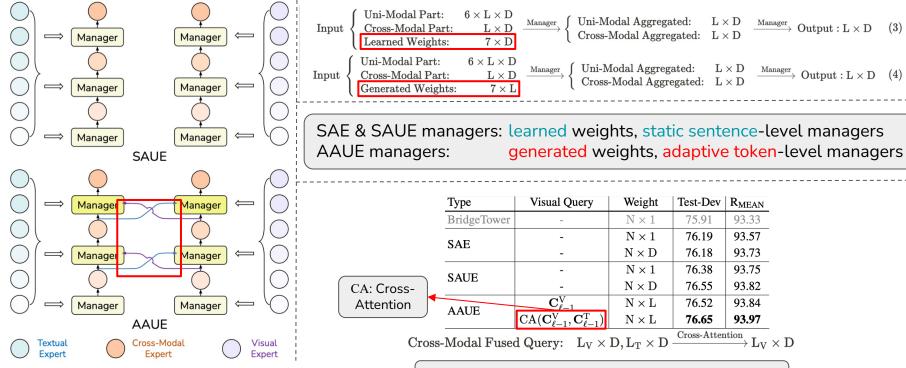
Static Aggregation of Experts (SAE) Manager



Static Aggregation of Uni-Modal Experts (SAUE) Manager



Adaptive Aggregation of Uni-Modal Experts (AAUE) Manager



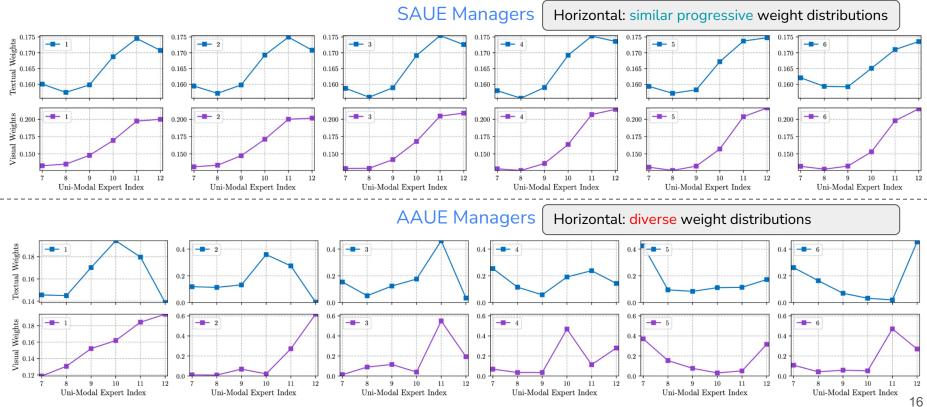
AAUE managers achieves best performance.

Main Results

Model	# Pre-train	Visual	VQAv2		SNLI-VE		NLVR ²		Flickr30K	
	Images	Backbone	Test-Dev	Test-Std	Dev	Test	Dev	Test-P	IR@1	TR@1
Base-size models pre-trained on 4M public data										
ViLT _{BASE} (Kim et al., 2021)	4M	ViT-B-384/32	71.26	-	-	-	75.70	76.13	64.4	83.5
UNITER _{BASE} (Chen et al., 2020) *	4M	Faster R-CNN	72.70	72.91	78.59	78.28	77.18	77.85	72.52	85.90
VILLA _{BASE} (Gan et al., 2020) *	4M	Faster R-CNN	73.59	73.67	79.47	79.03	78.39	79.30	74.74	86.60
UNIMO _{BASE} (Li et al., 2021b)	4M	Faster R-CNN	73.79	74.02	80.00	79.10	-	-	74.66	89.70
ALBEF _{BASE} (Li et al., 2021a) *	4M	DeiT-B-224/16	74.54	74.70	80.14	80.30	80.24	80.50	82.8	94.3
VinVL _{BASE} (Zhang et al., 2021)	5.7M	ResNeXt-152	75.95	76.12	-	-	82.05		-	-
METER-Swin _{BASE} (Dou et al., 2022)	4M	Swin-B-384/32	76.43	76.42	80.61	80.45	82.23	82.47	79.02	92.40
VLMO _{BASE} (Wang et al., 2021a)	4M	BEiT-B-224/16	76.64	76.89	-	-	82.77	83.34	79.3	92.3
METER-CLIP _{BASE} (Dou et al., 2022)	4M	CLIP-ViT-B-224/16	77.68	77.64	80.86	81.19	82.33	83.05	82.22	94.30
BridgeTower _{BASE} (Xu et al., 2022)	4M	CLIP-ViT-B-224/16	78.66	78.73	81.11	81.19	81.85	83.09	85.83	94.73
ManagerTower _{BASE} (Ours)	4M	CLIP-ViT-B-224/16	79.39	79.15	81.26	81.44	82.81	83.34	86.56	95.64
Models pre-trained on more data and/or with larger size										
UNITER _{LARGE} (Chen et al., 2020) *	4M	Faster R-CNN	73.82	74.02				79.98	75.56	87.30
VILLA _{LARGE} (Gan et al., 2020) *	4M	Faster R-CNN	74.69	74.87			79.76	81.47	76.26	87.90
UNIMO _{LARGE} (Li et al., 2021b)	4M	Faster R-CNN	75.06	75.27	81.11	80.63	-	-	78.04	89.40
ALBEF _{BASE} (Li et al., 2021a) *	14 M	DeiT-B-224/16	75.84	76.04	80.80	80.91	82.55	83.14	85.6	95.9
VinVL _{LARGE} (Zhang et al., 2021)	5.7M	ResNeXt-152	76.52	76.63	-	-	82.67	83.98	-	-
BLIP _{BASE} (Li et al., 2022a) *	14 M	DeiT-B-224/16	77.54	77.62	-	-	82.67	82.30	87.2	96.6
SimVLM _{BASE} (Wang et al., 2021b) \star	1.8B	ResNet-101	77.87	78.14	84.20	84.15	81.72	81.77	-	-
BLIP _{BASE} (Li et al., 2022a) *	129M	DeiT-B-224/16	78.24	78.17	-	-	82.48	83.08	87.3	97.3
SimVLM _{LARGE} (Wang et al., 2021b) \star	1.8B	ResNet-152	79.32	79.56	85.68	85.62	84.13	84.84	-	-
VLMO _{LARGE} (Wang et al., 2021a)	4M	BEiT-L-224/16	79.94	79.98	-	-	85.64	86.86	84.5	95.3
SimVLM _{HUGE} (Wang et al., 2021b) \star	1.8B	Larger ResNet-152	80.03	80.34	86.21	86.32	84.53	85.15	-	-

Follow METER's and BridgeTower's setting + 4M Vision-Language Pre-training + Managers => significant gains and outperforms some models trained with more data and parameters.

Visualization of Aggregation Weights



Take-Away Messages

- Introduce managers in each cross-modal layer to
 - adaptively aggregate the insights of pre-trained uni-modal experts at different levels
 - flexibly generate different aggregation weights for different tokens in different samples
 - facilitate more comprehensive cross-modal alignment and fusion
- Cross-modal fused query
 - incorporates the output visual & textual representations of the previous cross-modal layer
 - to help managers to correctly aggregate uni-modal semantic knowledge required by the current cross-modal layer
- ManagerTower can work with any visual, textual, or cross-modal encoder

Xiao Xu^{1,3}, Bei Li^{2,3}, Chenfei Wu³, Shao-Yen Tseng⁴, Anahita Bhiwandiwalla⁴, Shachar Rosenman⁴, Vasudev Lal⁴, Wanxiang Che¹, Nan Duan³

¹Harbin Institute of Technology, ²Northeastern University, ³Microsoft Research Asia, ⁴Intel Labs

ACL 2023 Oral || Presenter: Xiao Xu || July, 2023

Slides and more in https://looperxx.github.io/.